Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Thermal diffusivity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Rate at which heat spreads throughout a material}} In [[thermodynamics]], '''thermal diffusivity''' is the [[thermal conductivity]] divided by [[density]] and [[specific heat capacity]] at constant pressure.<ref>{{CRC90|page=2-65}}</ref> It is a measure of the rate of [[heat transfer]] inside a material and has [[SI|SI units]] of m<sup>2</sup>/s. It is an [[intensive property]]. Thermal diffusivity is usually denoted by lowercase [[alpha]] ({{mvar|α}}), but {{mvar|a}}, {{mvar|h}}, {{mvar|κ}} ([[kappa]]),<ref>{{cite book |last1=Hetnarski |first1=Richard B. |last2=Eslami |first2=M. Reza |title=Thermal Stresses – Advanced Theory and Applications |year=2009 |publisher=Springer Netherlands |location=Dordrecht |isbn=978-1-4020-9247-3 |pages=170 |edition=Online-Ausg. |doi=10.1007/978-3-030-10436-8}}</ref> {{mvar|K}},<ref name = AJP>{{cite journal |last1=Unsworth |first1=J. |last2=Duarte |first2=From. J. |author2-link=F. J. Duarte |title=Heat diffusion in a solid sphere and Fourier Theory |journal=Am. J. Phys. |pages=891–893 |doi=10.1119/1.11601 |volume=47 |bibcode=1979AmJPh..47..981U |issue=11 |year=1979}}</ref> {{mvar|D}}, <math>D_T</math> are also used. The formula is<ref>{{cite book |first1=R. Byron |last1=Bird |first2=Warren E. |last2=Stewart |first3=Edwin N. |last3=Lightfoot |title=Transport Phenomena |publisher=John Wiley and Sons, Inc. |year=1960 |isbn=978-0-471-07392-5 |at=Eq. 8.1-7 |url-access=registration |url=https://archive.org/details/transportphenome00bird}}</ref> <math display="block"> \alpha = \frac{k}{\rho c_p}, </math> where : {{mvar|k}} is [[thermal conductivity]] (W/(m·K)), : {{mvar|c{{sub|p}}}} is [[specific heat capacity]] (J/(kg·K)), : {{mvar|ρ}} is [[density]] (kg/m<sup>3</sup>). Together, {{mvar|ρc{{sub|p}}}} can be considered the [[volumetric heat capacity]] (J/(m<sup>3</sup>·K)). Thermal diffusivity is a positive [[coefficient]] in the [[heat equation]]:<ref>{{cite book |last1=Carslaw |first1=H. S. |author1-link=Horatio Scott Carslaw |last2=Jaeger |first2=J. C. |author2-link=John Conrad Jaeger |year=1959 |title=Conduction of Heat in Solids |edition=2nd |publisher=Oxford University Press |isbn=978-0-19-853368-9}}</ref> <math display="block"> \frac{\partial T}{\partial t} = \alpha \nabla^2 T. </math> One way to view thermal diffusivity is as the ratio of the [[time derivative]] of [[temperature]] to its [[Second derivative#Generalization to higher dimensions|curvature]], quantifying the rate at which temperature concavity is "smoothed out". In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its energy storage capacity or "thermal bulk". Thermal diffusivity and [[thermal effusivity]] are related concepts and quantities used to simulate [[non-equilibrium thermodynamics]]. Diffusivity is the more fundamental concept and describes the [[stochastic process]] of heat spread throughout some ''[[local property|local]] volume'' of a substance. Effusivity describes the corresponding transient process of heat flow through some ''local area'' of interest. Upon reaching a [[steady state]], where the stored energy distribution stabilizes, the thermal conductivity ({{mvar|k}}) may be sufficient to describe heat transfers inside solid or rigid bodies by applying [[Fourier's law]].<ref>{{cite book |last=Dante |first=Roberto C. |title=Handbook of Friction Materials and Their Applications |year=2016 |publisher=Elsevier |doi=10.1016/B978-0-08-100619-1.00009-2 |pages=123–134}}</ref><ref>{{cite book |last=Venkanna |first=B. K. |title=Fundamentals of Heat and Mass Transfer |url=https://books.google.com/books?id=IIIVHRirRgEC&pg=PA38 |access-date=1 December 2011 |year=2010 |publisher=PHI Learning |location=New Delhi |isbn=978-81-203-4031-2 |page=38}}</ref> Thermal diffusivity is often measured with the [[Laser flash analysis|flash method]].<ref>{{Cite web |url=http://www.netzsch.com/en/home/ |title=NETZSCH-Gerätebau, Germany |access-date=2012-03-12 |archive-url=https://web.archive.org/web/20120311084633/http://www.netzsch.com/en/home/ |archive-date=2012-03-11 |url-status=dead }}</ref><ref name="Parker"> {{cite journal |author1=W. J. Parker |author2=R. J. Jenkins |author3=C. P. Butler |author4=G. L. Abbott |title=Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity |journal=Journal of Applied Physics |volume=32 |issue=9 |page=1679 |year=1961 |doi=10.1063/1.1728417 |bibcode=1961JAP....32.1679P }}</ref> It involves heating a strip or cylindrical sample with a short energy pulse at one end and analyzing the temperature change (reduction in amplitude and phase shift of the pulse) a short distance away.<ref> {{cite journal |author1=J. Blumm |author2=J. Opfermann |title= Improvement of the mathematical modeling of flash measurements |journal=High Temperatures – High Pressures |volume=34 |issue=5 |page=515 |year=2002 |doi=10.1068/htjr061 }}</ref><ref>{{cite conference |last=Thermitus |first=M.-A. |editor=Gaal, Daniela S. |editor2=Gaal, Peter S. |title=New Beam Size Correction for Thermal Diffusivity Measurement with the Flash Method |conference=30th International Thermal Conductivity Conference/18th International Thermal Expansion Symposium |conference-url=https://web.archive.org/web/20100128105338/http://www.thermalconductivity.org/ |book-title=Thermal Conductivity 30/Thermal Expansion 18 |url=https://books.google.com/books?id=F9row3bxLuYC&pg=PA217 |access-date=1 December 2011 |date=October 2010 |publisher=DEStech Publications |location=Lancaster, PA |isbn=978-1-60595-015-0 |page=217}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)