Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Three utilities problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{good article}} {{short description|Mathematical puzzle of avoiding crossings}} {{redirect|Water, gas and electricity|the utilities|Public utility|the novel Sewer, Gas & Electric|Matt Ruff}} [[File:3 utilities problem plane.svg|thumb|Diagram of the three utilities problem on a plane. All lines are connected, but two of them are crossing.]] {{multiple image |image1=Graph K3-3.svg |image2=Complex polygon 2-4-3-bipartite graph.png |total_width=360 |footer=Two views of the utility graph, also known as the Thomsen graph or <math>K_{3,3}</math>}} The '''three utilities problem''', also known as '''water, gas and electricity''', is a [[mathematical puzzle]] that asks for non-crossing connections to be drawn between three houses and three utility companies on a [[Plane (geometry)|plane]]. When posing it in the early 20th century, [[Henry Dudeney]] wrote that it was already an old problem. It is an [[List of impossible puzzles|impossible puzzle]]: it is not possible to connect all nine lines without any of them crossing. Versions of the problem on nonplanar surfaces such as a [[torus]] or [[Möbius strip]], or that allow connections to pass through other houses or utilities, can be solved. This puzzle can be formalized as a problem in [[topological graph theory]] by asking whether the [[complete bipartite graph]] <math>K_{3,3}</math>, with vertices representing the houses and utilities and edges representing their connections, has a [[graph embedding]] in the plane. The impossibility of the puzzle corresponds to the fact that <math>K_{3,3}</math> is not a [[planar graph]]. Multiple proofs of this impossibility are known, and form part of the proof of [[Kuratowski's theorem]] characterizing planar graphs by two forbidden subgraphs, one of which {{nowrap|is <math>K_{3,3}</math>.}} The question of minimizing the [[Crossing number (graph theory)|number of crossings]] in drawings of complete bipartite graphs is known as [[Turán's brick factory problem]], and for <math>K_{3,3}</math> the minimum number of crossings is one. <math>K_{3,3}</math> is a graph with six vertices and nine edges, often referred to as the '''utility graph''' in reference to the problem.{{r|gs93}} It has also been called the '''Thomsen graph''' after 19th-century chemist [[Hans Peter Jørgen Julius Thomsen|Julius Thomsen]]. It is a [[well-covered graph]], the smallest [[triangle-free graph|triangle-free]] [[cubic graph]], and the smallest non-planar [[Laman graph|minimally rigid graph]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)