Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Time series
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Sequence of data points over time}} {{distinguish|Time_(disambiguation)#Film_and_television{{!}}''Time'' (Film and TV)}} {{Use American English|date = March 2019}} [[File:Random-data-plus-trend-r2.png|thumb|250px|Time series: random data plus trend, with best-fit line and different applied filters|alt=|right]] In [[mathematics]], a '''time series''' is a series of [[data point]]s indexed (or listed or graphed) in time order. Most commonly, a time series is a [[sequence]] taken at successive equally spaced points in time. Thus it is a sequence of [[discrete-time]] data. Examples of time series are heights of ocean [[tides]], counts of [[sunspots]], and the daily closing value of the [[Dow Jones Industrial Average]]. A time series is very frequently plotted via a [[run chart]] (which is a temporal [[line chart]]). Time series are used in [[statistics]], [[signal processing]], [[pattern recognition]], [[econometrics]], [[mathematical finance]], [[weather forecasting]], [[earthquake prediction]], [[electroencephalography]], [[control engineering]], [[astronomy]], [[communications engineering]], and largely in any domain of applied [[Applied science|science]] and [[engineering]] which involves [[Time|temporal]] measurements. '''Time series ''analysis''''' comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. '''Time series ''forecasting''''' is the use of a [[model (abstract)|model]] to predict future values based on previously observed values. Generally, time series data is modelled as a [[stochastic process]]. While [[regression analysis]] is often employed in such a way as to test relationships between one or more different time series, this type of analysis is not usually called "time series analysis", which refers in particular to relationships between different points in time within a single series. Time series data have a natural temporal ordering. This makes time series analysis distinct from [[cross-sectional study|cross-sectional studies]], in which there is no natural ordering of the observations (e.g. explaining people's wages by reference to their respective education levels, where the individuals' data could be entered in any order). Time series analysis is also distinct from [[spatial data analysis]] where the observations typically relate to geographical locations (e.g. accounting for house prices by the location as well as the intrinsic characteristics of the houses). A [[stochastic]] model for a time series will generally reflect the fact that observations close together in time will be more closely related than observations further apart. In addition, time series models will often make use of the natural one-way ordering of time so that values for a given period will be expressed as deriving in some way from past values, rather than from future values (see [[time reversibility]]). Time series analysis can be applied to [[real number|real-valued]], continuous data, [[:wikt:discrete|discrete]] [[Data type#Numeric types|numeric]] data, or discrete symbolic data (i.e. sequences of characters, such as letters and words in the [[English language]]<ref>{{cite book |last1=Lin |first1=Jessica |last2=Keogh |first2=Eamonn |last3=Lonardi |first3=Stefano |last4=Chiu |first4=Bill |chapter=A symbolic representation of time series, with implications for streaming algorithms |title=Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery |pages=2β11 |year=2003 |location=New York |publisher=ACM Press |doi=10.1145/882082.882086|isbn=9781450374224 |citeseerx=10.1.1.14.5597 |s2cid=6084733 }}</ref>).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)