Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Unordered pair
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], an '''unordered pair''' or '''pair set''' is a [[Set (mathematics)|set]] of the form {''a'', ''b''}, i.e. a set having two elements ''a'' and ''b'' with {{em|no particular relation between them}}, where {''a'', ''b''} = {''b'', ''a''}. In contrast, an [[ordered pair]] (''a'', ''b'') has ''a'' as its first element and ''b'' as its second element, which means (''a'', ''b'') ≠ (''b'', ''a''). While the two elements of an ordered pair (''a'', ''b'') need not be distinct, modern authors only call {''a'', ''b''} an unordered pair if ''a'' ≠ ''b''.<ref> {{Citation | last1=Düntsch | first1=Ivo | last2=Gediga | first2=Günther | title=Sets, Relations, Functions | publisher=Methodos | series=Primers Series | isbn=978-1-903280-00-3 | year=2000}}.</ref><ref>{{Citation | last1=Fraenkel | first1=Adolf | title=Einleitung in die Mengenlehre | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=1928}}</ref><ref>{{Citation | last1=Roitman | first1=Judith | title=Introduction to modern set theory | publisher=[[John Wiley & Sons]] | location=New York | isbn=978-0-471-63519-2 | year=1990 | url-access=registration | url=https://archive.org/details/introductiontomo0000roit }}.</ref><ref>{{Citation | last1=Schimmerling | first1=Ernest | title=Undergraduate set theory | year=2008 }} </ref> But for a few authors a [[Singleton (mathematics)|singleton]] is also considered an unordered pair, although today, most would say that {''a'', ''a''} is a [[multiset]]. It is typical to use the term unordered pair even in the situation where the elements a and b could be equal, as long as this equality has not yet been established. A set with precisely two elements is also called a [[finite set|2-set]] or (rarely) a '''binary set'''. An unordered pair is a [[finite set]]; its [[cardinality]] (number of elements) is 2 or (if the two elements are not distinct) 1. In [[axiomatic set theory]], the existence of unordered pairs is required by an axiom, the [[axiom of pairing]]. More generally, an '''unordered '''''n'''''-tuple''' is a set of the form {''a''<sub>1</sub>, ''a''<sub>2</sub>,... ''a<sub>n</sub>''}.<ref> {{Citation | last1=Hrbacek | first1=Karel | last2=Jech | first2=Thomas | author2-link=Thomas Jech | title=Introduction to set theory | publisher=Dekker | location=New York | edition=3rd | isbn=978-0-8247-7915-3 | year=1999}}.</ref><ref>{{Citation | last1=Rubin | first1=Jean E. |author1-link=Jean E. Rubin | title=Set theory for the mathematician | publisher=Holden-Day | year=1967}}</ref><ref>{{Citation | last1=Takeuti | first1=Gaisi | last2=Zaring | first2=Wilson M. | title=Introduction to axiomatic set theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Graduate Texts in Mathematics | year=1971}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)