Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vector projection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in linear algebra}} {{For|more general concepts|Projection (linear algebra)|Projection (mathematics)}} {{Lead too long|date=September 2024}} The '''vector projection''' (also known as the '''vector component''' or '''vector resolution''') of a [[Vector (geometry)|vector]] {{math|'''a'''}} on (or onto) a nonzero vector {{math|'''b'''}} is the [[orthogonal projection]] of {{math|'''a'''}} onto a [[straight line]] parallel to {{math|'''b'''}}. The projection of {{math|'''a'''}} onto {{math|'''b'''}} is often written as <math>\operatorname{proj}_\mathbf{b} \mathbf{a}</math> or {{math|'''a'''<sub>∥'''b'''</sub>}}. The vector component or vector resolute of {{math|'''a'''}} [[perpendicular]] to {{math|'''b'''}}, sometimes also called the '''vector rejection''' of {{math|'''a'''}} ''from'' {{math|'''b'''}} (denoted <math>\operatorname{oproj}_{\mathbf{b}} \mathbf{a}</math> or {{math|'''a'''<sub>⊥'''b'''</sub>}}),<ref>{{cite book |first=G. |last=Perwass |year=2009 |url=https://books.google.com/books?id=8IOypFqEkPMC&pg=PA83 |title=Geometric Algebra With Applications in Engineering |page=83 |publisher=Springer |isbn=9783540890676 }}</ref> is the orthogonal projection of {{math|'''a'''}} onto the [[plane (geometry)|plane]] (or, in general, [[hyperplane]]) that is [[orthogonal]] to {{math|'''b'''}}. Since both <math>\operatorname{proj}_{\mathbf{b}} \mathbf{a}</math> and <math>\operatorname{oproj}_{\mathbf{b}} \mathbf{a}</math> are vectors, and their sum is equal to {{math|'''a'''}}, the rejection of {{math|'''a'''}} from {{math|'''b'''}} is given by: <math display="block">\operatorname{oproj}_{\mathbf{b}} \mathbf{a} = \mathbf{a} - \operatorname{proj}_{\mathbf{b}} \mathbf{a}.</math> [[File:Projection and rejection.svg|thumb|488x488px|Projection of {{math|'''a'''}} on {{math|'''b'''}} ('''a'''<sub>1</sub>), and rejection of {{math|'''a'''}} from {{math|'''b'''}} ('''a'''<sub>2</sub>).|center]] [[File:Projection and rejection 2.svg|thumb|248px|When {{math|90° < ''θ'' ≤ 180°}}, {{math|'''a'''<sub>1</sub>}} has an opposite direction with respect to {{math|'''b'''}}.]] To simplify notation, this article defines <math>\mathbf{a}_1 := \operatorname{proj}_{\mathbf{b}} \mathbf{a}</math> and <math>\mathbf{a}_2 := \operatorname{oproj}_{\mathbf{b}} \mathbf{a}.</math> Thus, the vector <math>\mathbf{a}_1</math> is parallel to <math>\mathbf{b},</math> the vector <math>\mathbf{a}_2</math> is orthogonal to <math>\mathbf{b},</math> and <math>\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2.</math> The projection of {{math|'''a'''}} onto {{math|'''b'''}} can be decomposed into a direction and a scalar magnitude by writing it as <math>\mathbf{a}_1 = a_1\mathbf{\hat b}</math> where <math>a_1</math> is a scalar, called the ''[[scalar projection]]'' of {{math|'''a'''}} onto {{math|'''b'''}}, and {{math|'''b̂'''}} is the [[unit vector]] in the direction of {{math|'''b'''}}. The scalar projection is defined as<ref name=":1">{{Cite web|title=Scalar and Vector Projections| url=https://www.ck12.org/book/ck-12-college-precalculus/section/9.6/|access-date=2020-09-07|website=www.ck12.org}}</ref> <math display="block">a_1 = \left\|\mathbf{a}\right\|\cos\theta = \mathbf{a}\cdot\mathbf{\hat b}</math> where the operator '''⋅''' denotes a [[dot product]], ‖'''a'''‖ is the [[Euclidean norm|length]] of {{math|'''a'''}}, and ''θ'' is the [[angle]] between {{math|'''a'''}} and {{math|'''b'''}}. The scalar projection is equal in absolute value to the length of the vector projection, with a minus sign if the direction of the projection is [[opposite vector|opposite]] to the direction of {{math|'''b'''}}, that is, if the angle between the vectors is more than 90 degrees. The vector projection can be calculated using the dot product of <math>\mathbf{a}</math> and <math>\mathbf{b}</math> as: <math display="block">\operatorname{proj}_{\mathbf{b}} \mathbf{a} = \left(\mathbf{a} \cdot \mathbf{\hat b}\right) \mathbf{\hat b} = \frac {\mathbf{a} \cdot \mathbf{b}} {\left\|\mathbf{b}\right\| } \frac {\mathbf{b}} {\left\|\mathbf{b}\right\|} = \frac {\mathbf{a} \cdot \mathbf{b}} {\left\|\mathbf{b}\right\|^2}{\mathbf{b}} = \frac {\mathbf{a} \cdot \mathbf{b}} {\mathbf{b} \cdot \mathbf{b}}{\mathbf{b}} ~ .</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)