Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weibull distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Continuous probability distribution}} {{Multiple issues | {{Citation style |reason=article uses multiple citation styles, including [[WP:PAREN|inline parenthetical referencing]]. Pick one style, and then use it consistently |date=April 2025}} {{Too many external links |date=November 2024}} }} {{Use Oxford spelling |date=April 2025}} {{Use dmy dates |date=April 2025}} {{Infobox probability distribution |name =Weibull (2-parameter) |type =density |pdf_image =[[Image:Weibull PDF.svg|325px|Probability distribution function]] |cdf_image =[[Image:Weibull CDF.svg|325px|Cumulative distribution function]] |parameters =<math>\lambda\in (0, +\infty)\,</math> [[scale parameter|scale]] <br/><math>k\in (0, +\infty)\,</math> [[shape parameter|shape]] |support =<math>x \in [0, +\infty)\,</math> |pdf =<math>f(x)=\begin{cases} \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^k}, & x\geq0,\\ 0, & x<0.\end{cases}</math> |cdf =<math>F(x)=\begin{cases}1 - e^{-(x/\lambda)^k}, & x\geq0,\\ 0, & x<0.\end{cases}</math> |quantile =<math>Q(p)=\lambda(-\ln(1-p))^\frac{1}{k}</math> |mean =<math>\lambda \, \Gamma(1+1/k)\,</math> |median =<math>\lambda(\ln2)^{1/k}\,</math> |mode =<math>\begin{cases} \lambda \left(\frac{k-1}{k} \right)^{1/k}\,, &k>1,\\ 0, &k\leq 1.\end{cases}</math> |variance =<math>\lambda^2\left[\Gamma\left(1+\frac{2}{k}\right) - \left(\Gamma\left(1+\frac{1}{k}\right)\right)^2\right]\,</math> |skewness =<math>\frac{\Gamma(1+3/k)\lambda^3-3\mu\sigma^2-\mu^3}{\sigma^3}</math> |kurtosis =(see text) |entropy =<math>\gamma(1-1/k)+\ln(\lambda/k)+1 \,</math> |mgf = <math>\sum_{n=0}^\infty \frac{t^n\lambda^n}{n!}\Gamma(1+n/k), \ k\geq1</math> |char = <math>\sum_{n=0}^\infty \frac{(it)^n\lambda^n}{n!}\Gamma(1+n/k)</math> |KLDiv = see below }} In [[probability theory]] and [[statistics]], the '''Weibull distribution''' {{IPAc-en|ˈ|w|aɪ|b|ʊ|l}} is a continuous [[probability distribution]]. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page. The distribution is named after Swedish mathematician [[Waloddi Weibull]], who described it in detail in 1939,<ref>{{cite journal| author=W. Weibull| date=1939| title=The Statistical Theory of the Strength of Materials| language=en| journal=Ingeniors Vetenskaps Academy Handlingar| issue=151 | publisher=Generalstabens Litografiska Anstalts Förlag| location=Stockholm| pages=1–45}}</ref><ref>Bowers, et. al. (1997) Actuarial Mathematics, 2nd ed. Society of Actuaries.</ref> although it was first identified by [[René Maurice Fréchet]] and first applied by {{harvtxt|Rosin|Rammler|1933}} to describe a [[Particle-size distribution|particle size distribution]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)