Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Acetone peroxide
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == Acetone peroxide (specifically, triacetone triperoxide) was discovered in 1895 by the German chemist [[Richard Wolffenstein (chemist)|Richard Wolffenstein]].<ref>{{cite journal| first=R| last=Wolffenstein | name-list-style = vanc | title=Über die Einwirkung von Wasserstoffsuperoxyd auf Aceton und Mesityloxyd | trans-title = On the effect of hydrogen peroxide on acetone and mesityl oxide | language = de | journal = Berichte der Deutschen Chemischen Gesellschaft | volume=28 | issue=2 | pages= 2265–2269 | year=1895 | url = https://babel.hathitrust.org/cgi/pt?id=mdp.39015026352040;view=1up;seq=1001 | doi = 10.1002/cber.189502802208}} Wolffenstein determined that acetone peroxide formed a trimer, and he proposed a structural formula for it. From pp. 2266–2267: ''"Die physikalischen Eigenschaften des Superoxyds, der feste Aggregatzustand, die Unlöslichkeit in Wasser etc. sprachen dafür, dass das Molekulargewicht desselben ein grösseres wäre, als dem einfachen Atomverhältnisse entsprach. … Es lag also ein trimolekulares Acetonsuperoxyd vor, das aus dem monomolekularen entstehen kann, indem sich die Bindungen zwischen je zwei Sauerstoffatomen lösen und zur Verknüpfung mit den Sauerstoffatomen eines benachbarten Moleküls dienen. Man gelangt so zur folgenden Constitutionsformel: ''[diagram of proposed molecular structure of the trimer of acetone peroxide]'' . Diese eigenthümliche ringförmig constituirte Verbindung soll Tri-Cycloacetonsuperoxyd genannt werden."'' (The physical properties of the peroxide, its solid state of aggregation, its insolubility in water, etc., suggested that its molecular weight would be a greater [one] than corresponded to its simple empirical formula. … Thus [the result of the molecular weight determination showed that] there was present a tri-molecular acetone peroxide, which can arise from the monomer by the bonds between each pair of oxygen atoms [on one molecule of acetone peroxide] breaking and serving as links to the oxygen atoms of a neighboring molecule. One thus arrives at the following structural formula: [diagram of proposed molecular structure of the trimer of acetone peroxide] . This strange ring-shaped compound shall be named "tri-cycloacetone peroxide".)</ref><ref>Wolfenstein R (1895) Deutsches Reichspatent 84,953</ref><ref>{{cite book | last1 = Matyáš | first1 = Robert | last2 = Pachman | first2 = Jiří | name-list-style = vanc | title = Primary Explosives | date = 2013 | publisher = Springer | location = Berlin | isbn = 978-3-642-28436-6 | page = 262 | url = https://books.google.com/books?id=wfJHAAAAQBAJ&pg=PA262 }}</ref> Wolffenstein combined [[acetone]] and [[hydrogen peroxide]], and then he allowed the mixture to stand for a week at room temperature, during which time a small quantity of crystals precipitated, which had a melting point of {{cvt|97|°C}}.{{sfn|Wolffenstein|1895|p=2266}} In 1899, [[Adolf von Baeyer]] and [[Victor Villiger]] described the first synthesis of the dimer and described use of acids for the synthesis of both peroxides.<ref>{{cite journal |last1=Baeyer |first1=Adolf |last2=Villiger |first2=Victor |date=1899 |url=https://babel.hathitrust.org/cgi/pt?id=uc1.b3481889;view=1up;seq=1107 |title=Einwirkung des Caro'schen Reagens auf Ketone |trans-title=Effect of Caro's reagent on ketones [part 1] |journal=Berichte der Deutschen Chemischen Gesellschaft |volume=32 |issue=3 |pages=3625–3633|doi=10.1002/cber.189903203151 }} [https://babel.hathitrust.org/cgi/pt?id=uc1.b3481889;view=1up;seq=1114 see p. 3632.]</ref><ref>{{cite journal | last1 = Baeyer | first1 = Adolf | last2 = Villiger | first2 = Victor | name-list-style = vanc | year = 1900a | title = Über die Einwirkung des Caro'schen Reagens auf Ketone |trans-title=On the effect of Caro's reagent on ketones [part 3] | url = https://babel.hathitrust.org/cgi/pt?id=hvd.cl1i1y;view=1up;seq=868 | journal = Berichte der Deutschen Chemischen Gesellschaft | volume = 33 | issue = 1 | pages = 858–864 | doi = 10.1002/cber.190003301153 }}</ref><ref>{{cite journal | last1 = Baeyer | first1 = Adolf | last2 = Villiger | first2 = Victor | name-list-style= vanc | year = 1900b | title = Über die Nomenclatur der Superoxyde und die Superoxyde der Aldehyde |trans-title=On the nomenclature of peroxides and the peroxide of aldehydes | url = https://zenodo.org/records/1425972/files/article.pdf | journal = Berichte der Deutschen Chemischen Gesellschaft | volume = 33 | issue = 2| pages = 2479–2487 | doi = 10.1002/cber.190003302185 }}</ref><ref>Federoff, Basil T. et al., ''Encyclopedia of Explosives and Related Items'' (Springfield, Virginia: National Technical Information Service, 1960), vol. 1, [https://archive.org/stream/Ullmans/01%20Ullmans-U-S-ARMY-Encyclopedia-of-Explosives-and-Related-Items-Vol-01#page/n147/mode/2up p. A41.]</ref><ref>Matyáš, Robert and Pachman, Jirí, ed.s, ''Primary Explosives'' (Berlin, Germany: Springer, 2013), p. 257.</ref> Baeyer and Villiger prepared the dimer by combining [[potassium persulfate]] in [[diethyl ether]] with acetone, under cooling. After separating the ether layer, the product was purified and found to melt at {{cvt|132–133|°C}}.{{sfn|Baeyer|Villiger|1899|p=3632}} They found that the trimer could be prepared by adding [[hydrochloric acid]] to a chilled mixture of acetone and hydrogen peroxide.{{sfn|Baeyer|Villiger|1900a|p=859}} By using the [[Freezing-point depression|depression of freezing points]] to determine the molecular weights of the compounds, they also determined that the form of acetone peroxide that they had prepared via potassium persulfate was a dimer, whereas the acetone peroxide that had been prepared via hydrochloric acid was a trimer, like Wolffenstein's compound.<ref>{{harvnb|Baeyer|Villiger|1900a|p=859}} {{lang|de|"Das mit dem Caro'schen Reagens dargestellte, bei 132–133° schmelzende Superoxyd gab bei der Molekulargewichtsbestimmung nach der Gefrierpunktsmethode Resultate, welche zeigen, dass es dimolekular ist. Um zu sehen, ob das mit Salzsäure dargestellte Superoxyd vom Schmp. 90–94° mit dem Wolffenstein'schen identisch ist, wurde davon ebenfalls eine Molekulargewichtsbestimmung gemacht, welche auf Zahlen führte, die für ein trimolekulares Superoxyd stimmen."}} [The peroxide that was prepared with Caro's reagent and that melted at {{cvt|132–133|°C}} gave—according to a determination of molecular weight via the freezing point method—results which show that it is dimolecular. In order to see whether the peroxide that was prepared with hydrochloric acid and that has a melting point of {{cvt|90–94|°C}} is identical to Wolffenstein's, its molecular weight was likewise determined, which led to values that are correct for a trimolecular peroxide.]</ref> Work on this methodology and on the various products obtained, was further investigated in the mid-20th century by Milas and Golubović.<ref name = MilasGolubovic59>{{cite journal | title = Studies in Organic Peroxides. XXVI. Organic Peroxides Derived from Acetone and Hydrogen Peroxide | vauthors = Milas NA, Golubović A | journal = [[Journal of the American Chemical Society]] | year = 1959 | volume = 81 | issue = 24 | pages = 6461–6462 | doi = 10.1021/ja01533a033 | bibcode = 1959JAChS..81.6461M }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)