Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Acoustic theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Derivation for a medium at rest== Starting with the Continuity Equation and the Euler Equation: : <math> \begin{align} \frac{\partial \rho}{\partial t} +\nabla\cdot \rho\mathbf{v} & = 0 \\ \rho\frac{\partial \mathbf{v}}{\partial t} + \rho(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p & = 0 \end{align} </math> If we take small perturbations of a constant pressure and density: : <math> \begin{align} \rho & = \rho_0+\rho' \\ p & = p_0 + p' \end{align} </math> Then the equations of the system are : <math> \begin{align} \frac{\partial}{\partial t}(\rho_0+\rho') +\nabla\cdot (\rho_0+\rho')\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla (p_0+p') & = 0 \end{align} </math> Noting that the equilibrium pressures and densities are constant, this simplifies to : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\nabla\cdot \rho'\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \end{align} </math> ===A Moving Medium=== Starting with : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{w}+\nabla\cdot \rho'\mathbf{w} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{w}}{\partial t} + (\rho_0+\rho')(\mathbf{w}\cdot\nabla)\mathbf{w} + \nabla p' & = 0 \end{align} </math> We can have these equations work for a moving medium by setting <math>\mathbf{w} = \mathbf{u} + \mathbf{v}</math>, where <math>\mathbf{u}</math> is the constant velocity that the whole fluid is moving at before being disturbed (equivalent to a moving observer) and <math>\mathbf{v}</math> is the fluid velocity. In this case the equations look very similar: : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' + \nabla\cdot \rho'\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{u}\cdot\nabla)\mathbf{v} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \end{align} </math> Note that setting <math>\mathbf{u} = 0</math> returns the equations at rest.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)