Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Additive inverse
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Common examples == When working with [[integer]]s, [[rational number]]s, [[real number]]s, and [[complex number]]s, the additive inverse of any number can be found by multiplying it by [[β1]].<ref name=":0" />[[Image:NegativeI2Root.svg|thumb|right|These complex numbers, two of eight values of [[root of unity|{{radic|1|8}}]], are mutually opposite]] {| class="wikitable" |+ Simple cases of additive inverses ! <math>n</math> ! <math>-n</math> |- | <math>7</math> | <math>-7</math> |- | <math>0.35</math> | <math>-0.35</math> |- | <math>\frac{1}{4}</math> | <math>-\frac{1}{4}</math> |- | <math>\pi</math> | <math>-\pi</math> |- | <math>1 + 2i</math> | <math>-1 - 2i</math> |} The concept can also be extended to algebraic expressions, which is often used when balancing [[equation]]s. {| class="wikitable" |+ Additive inverses of algebraic expressions ! <math>n</math> ! <math>-n</math> |- | <math>a - b</math> | <math>-(a - b) = -a + b</math> |- | <math>2x^2 + 5</math> | <math>-(2x^2 + 5) = -2x^2 - 5</math> |- | <math>\frac{1}{x + 2}</math> | <math>-\frac{1}{x+2}</math> |- | <math>\sqrt{2}\sin{\theta} - \sqrt{3}\cos{2\theta}</math> |<math>-(\sqrt{2}\sin{\theta} - \sqrt{3}\cos{2\theta}) = -\sqrt{2}\sin{\theta} + \sqrt{3}\cos{2\theta}</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)