Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Agulhas Current
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Physical properties== The sources of the Agulhas Current are the [[East Madagascar Current]] (25 Sv), the [[Mozambique Current]] (5 Sv) and a recirculated part of the south-west Indian subgyre south of Madagascar (35 Sv).<ref>{{Harvnb|Stramma|Lutjeharms|1997|loc=Abstract}}</ref> The net transport of the Agulhas Current is estimated as 100 Sv. The flow of the Agulhas Current is directed by the [[topography]]. The current follows the [[continental shelf]] from [[Maputo]] to the tip of the [[Agulhas Bank]] (250 km south of [[Cape Agulhas]]). Here the momentum of the current overcomes the [[vorticity]] balance holding the current to the topography and the current leaves the shelf.<ref name="Siedler">{{Harvnb|Siedler|Church|Gould|2001|pp=310β313}}</ref> The current reaches its maximum transport near the Agulhas Bank where it ranges between 95 and 136 Sv.<ref name="Baum">{{Harvnb|Baum|2014}}</ref> The core of the current is defined as where the surface velocities reach {{Convert|100|cm/s|abbr=on}}, which gives the core an average width of {{Convert|34|km|abbr=on}}. The mean peak speed is {{Convert|136|cm/s|abbr=on}}, but the current can reach {{Convert|245|cm/s|abbr=on}}.<ref name="Baum" /> ===Agulhas meanders and Natal pulses=== As the Agulhas Current flows south along the African east coast, it tends to bulge inshore frequently, a deviation from the current's normal path known as Agulhas Current meanders (ACM). These bulges are occasionally (1-7 times per year) followed by a much larger offshore bulge, known as Natal pulses (NP). Natal pulses move along the coast at {{Convert|20|km|abbr=on}} per day. An ACM can bulge up to {{Convert|20|km|abbr=on}} and a NP up to {{Convert|120|km|abbr=on}} from the current's mean position.<ref>{{Harvnb|Jackson|Rainville|Roberts|McQuald|2012}}</ref> The AC passes {{Convert|34|km|abbr=on}} offshore and an ACM can reach {{Convert|123|km|abbr=on}} offshore. When the AC meanders, its width broadens from {{Convert|88|km|abbr=on}} to {{Convert|125|km|abbr=on}} and its velocity weakens from {{Convert|208|cm/s|abbr=on}} to {{Convert|136|cm/s|abbr=on}}. An ACM induces a strong inshore counter-current.<ref>{{Harvnb|Leber|Beal|2012}}</ref> Large-scale cyclonic meanders known as Natal pulses are formed as the Agulhas Current reaches the continental shelf on the South African east-coast (i.e. the eastern Agulhas Bank off [[Natal Province|Natal]]). As these pulses moves along the coast on the Agulhas Bank, they tend to pinch off Agulhas rings from the Agulhas Current. Such a [[ring shedding]] can be triggered by a Natal pulse alone, but sometimes meanders on the [[Agulhas Return Current]] merge to contribute to the shedding of an Agulhas ring.<ref>{{Harvnb|Leeuwen|Ruijter|Lutjeharms|2000|loc=Abstract}}</ref> ===Retroflection=== In the southeast [[Atlantic Ocean]] the current [[retroflect]]s (turns back on itself) in the [[Agulhas Retroflection]] due to shear interactions with the strong [[Antarctic Circumpolar Current]], also known as the "[[West Wind Drift]]" despite referring to the ocean current rather than to the surface winds. This water becomes the Agulhas Return Current, rejoining the [[Indian Ocean Gyre]]. It is estimated that up to 85 Sv (Sv) of the net transport is returned to the [[Indian Ocean]] through the retroflection. The remaining water is transported into the [[South Atlantic Gyre]] in the Agulhas Leakage. Along with direct branch currents, this leakage takes place in surface water filaments, and Agulhas Eddies. ===Agulhas leakage and rings=== [[File:Agulhas Current NLOM .png|thumb|Agulhas rings are peeled off the Agulhas Current in the [[Agulhas Basin]] where it retroflects back into the Indian Ocean.]]{{Main|Agulhas Leakage}} It is estimated that as much as 15 Sv of [[Indian Ocean]] water is leaked directly into the [[South Atlantic]]. 10 Sv of this is relatively warm, salty [[thermocline]] water, with the remaining 5 Sv being cold, low salinity [[Antarctic Intermediate Water]]. Since Indian Ocean water is significantly warmer (24-26 Β°C) and saltier than South Atlantic water, the Agulhas Leakage is a significant source of salt and heat for the South Atlantic Gyre. This heat flux is believed to contribute to the high rate of evaporation in the South Atlantic, a key mechanism in the [[Thermohaline circulation|Meridional Overturning Circulation]]. A small amount of the Agulhas Leakage joins the [[North Brazil Current]], carrying Indian Ocean water into the [[North Atlantic Subtropical Gyre]].<ref name="Siedler" /> Before reaching the [[Caribbean Sea]], this leakage gets heated up by the sun around the equator, and, when finally joining the [[Gulf Stream]], this warm and salty water contributes to the formation of deep water in the North Atlantic.<ref>{{Harvnb|Schiele|2014}}</ref> Surface water filaments are estimated to account for up to 13% of the total salt transport from the Agulhas Current into the [[Benguela Current]] and South Atlantic Gyre. Due to surface dissipation, these filaments are not believed to significantly contribute to inter-basin heat flux.<ref name="Siedler" /> Where the Agulhas turns back on itself the loop of the retroflection pinches off periodically, releasing an [[eddy (fluid dynamics)|eddy]] into the South Atlantic Gyre. These [[warm core ring|"Agulhas Rings"]] enter the flow of the Benguela Current or are advected northwestward across the South Atlantic where they join the [[South Equatorial Current]], where they dissipate into the larger background currents. These [[anticyclonic]] [[warm core ring]]s are estimated to have a transport of 3-9 Sv each, in total injecting salt at a rate of 2.5<math>\cdot</math>10<sup>6</sup> kg/s and heat at a rate of 45 [[terawatt|TW]].<ref name="Siedler" /> ====Paleoclimate==== Since the [[Pleistocene]], the buoyancy of the South Atlantic [[thermocline]] and the strength of the Atlantic [[meridional overturning circulation]] has been regulated by the shedding of warm, saline Agulhas Rings. The Agulhas leakage affects the Atlantic thermocline on a decadal timescale and over centuries it can change the buoyancy of the Atlantic thermocline and therefore the formation rates of [[North Atlantic Deep Water]] (NADW).<ref>{{Harvnb|Simon|Arthur|Hall|Peeters|2013|loc=Introduction, pp. 101-103}}</ref> The provenance of ocean sediments can be determined by analysing [[Terrigenous sediment|terrigenous]] [[strontium]] isotope ratios in deep ocean cores. Sediments underlying the Agulhas Current and Return Current have significantly higher ratios than surrounding sediments. Franzese et al. 2009 analysed cores in the South Atlantic deposited during the [[Last Glacial Maximum]] (LGM, 20 000 years ago), and concluded that the Agulhas leakage was significantly reduced.<ref>{{Cite journal|last1=Franzese|first1=A|last2=Hemming|first2=S|author-link2=Sidney Hemming|last3=Goldstein|first3=S|last4=Anderson|first4=R|date=2006-10-15|title=Reduced Agulhas Leakage during the Last Glacial Maximum inferred from an integrated provenance and flux study|journal=Earth and Planetary Science Letters|language=en|volume=250|issue=1β2|pages=72β88|doi=10.1016/j.epsl.2006.07.002|bibcode=2006E&PSL.250...72F}}</ref> The trajectory of the current was the same during the LGM and that the reduced leakage must be explained by a weaker current.<ref>{{Cite journal|last1=Franzese|first1=Allison M.|last2=Hemming|first2=Sidney R.|author-link2=Sidney Hemming|last3=Goldstein|first3=Steven L.|date=2009|title=Use of strontium isotopes in detrital sediments to constrain the glacial position of the Agulhas Retroflection|journal=Paleoceanography|language=en|volume=24|issue=2|pages=n/a|doi=10.1029/2008PA001706|bibcode=2009PalOc..24.2217F|doi-access=free}}</ref> Furthermore, it can be predicted that a stronger Agulhas Current will result in a more eastward retroflection and an increased Agulhas leakage. {{Harvnb|Simon|Arthur|Hall|Peeters|2013}}, however, noted that changes in temperature and salinity in the Agulhas leakage is at least partly the result of variability in the composition in the current itself and can be a poor indicator of the strength of the leakage.<ref>{{Harvnb|Simon|Arthur|Hall|Peeters|2013|loc=Conclusions, p. 110}}</ref> ===Rogue waves=== The south-east coast of South Africa is on the main shipping route between the Middle-East and Europe/the U.S. and even large ships have sustained major damage because of [[rogue wave]]s in the area where these waves occasionally can reach a height of more than {{Convert|30|m|abbr=on}}. Some 30 larger ships were severely damaged or sunk by rogue waves along the South African east-coast between 1981 and 1991.<ref>{{Harvnb|Forsberg|Gerber|2012}}</ref> ===Agulhas Undercurrent=== Directly under the core of the Agulhas Current, at a depth of {{Convert|800|m|abbr=on}}, there is an Agulhas Undercurrent which flows equatorward.<ref>{{Harvnb|RSMAS|2005}}</ref> The undercurrent is {{Convert|2000|m|abbr=on}} deep and {{Convert|40|km|abbr=on}} wide and can reach {{Convert|90|cm/s|abbr=on}} at {{Convert|1400|m}}, one of greatest speeds observed in any current at this depth, but it also displays a great variance with a transport of 4.2Β±5.2 Sv. The undercurrent can represent as much as 40% of the Indian Ocean [[meridional overturning circulation|overturning transport]].<ref name="Beal-2009-Intro">{{Harvnb|Beal|2009|loc=Abstract, Introduction, pp. 2436-2437}}</ref> Below {{Convert|1800|m|abbr=on}} a separate layer of the undercurrent can be distinguished: the more coherent [[North Atlantic Deep Water]] (NADW) which transports an average of 2.3Β±3.0 Sv.<ref name="Beal-2009-Intro" /> NADW rounds the southern tip of Africa after which the major part (9 Sv) flow eastward and a smaller part (2 Sv) northward through the Agulhas Undercurrent and into the [[Natal Valley]] (the basin between South Africa and the Mocambique Plateau); remnants of NADW has been observed in the [[Mozambique Basin]] and [[Mozambique Channel|Channel]]. The undercurrent is more leaky than the Agulhas above, resulting in a relatively well-mixed composition of water masses — at intermediate depth there is a mixture of [[Antarctic Intermediate Water]] and [[Read Sea Water]].<ref name="Beal-2009-Disc">{{Harvnb|Beal|2009|loc=Discussion and summary, pp. 2448-2449}}</ref> The periodicity of the meanders and Natal pulses of the Agulhas is matched by the Agulhas Undercurrent.<ref name="Beal-2009-Intro" /> More research is needed but observations seem to indicate that during a meander event the Agulhas moves first onshore, then offshore, and finally onshore again, first weakening then strengthening 10-15 Sv. At the same time the undercurrent is first squeezed offshore and weakened when the Agulhas moves onshore, then strengthened and forced upward when the Agulhas moves offshore, and finally returns to normal.<ref name="Beal-2009-Disc" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)