Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Akra–Bazzi method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Formulation == The Akra–Bazzi method applies to recurrence formulas of the form:<ref name=":0">{{Cite journal|last1=Akra|first1=Mohamad|last2=Bazzi|first2=Louay|date=May 1998|title=On the solution of linear recurrence equations|journal=Computational Optimization and Applications|volume=10|issue=2|pages=195–210|doi=10.1023/A:1018373005182|s2cid=7110614 }}</ref> :<math>T(x)=g(x) + \sum_{i=1}^k a_i T(b_i x + h_i(x))\qquad \text{for }x \geq x_0.</math> The conditions for usage are: * sufficient base cases are provided * <math>a_i</math> and <math>b_i</math> are constants for all <math>i</math> * <math>a_i > 0</math> for all <math>i</math> * <math>0 < b_i < 1</math> for all <math>i</math> * <math>\left|g'(x)\right| \in O(x^c)</math>, where ''c'' is a constant and ''O'' notates [[Big O notation]] * <math>\left| h_i(x) \right| \in O\left(\frac{x}{(\log x)^2}\right)</math> for all <math>i</math> * <math>x_0</math> is a constant The asymptotic behavior of <math>T(x)</math> is found by determining the value of <math>p</math> for which <math>\sum_{i=1}^k a_i b_i^p = 1</math> and plugging that value into the equation:<ref>{{Cite web|url=https://people.mpi-inf.mpg.de/~mehlhorn/DatAlg2008/NewMasterTheorem.pdf|title=Proof and application on few examples}}</ref> :<math>T(x) \in \Theta \left( x^p\left( 1+\int_1^x \frac{g(u)}{u^{p+1}}du \right)\right)</math> (see [[Big O notation|Θ]]). Intuitively, <math>h_i(x)</math> represents a small perturbation in the index of <math>T</math>. By noting that <math>\lfloor b_i x \rfloor = b_i x + (\lfloor b_i x \rfloor - b_i x)</math> and that the absolute value of <math>\lfloor b_i x \rfloor - b_i x</math> is always between 0 and 1, <math>h_i(x)</math> can be used to ignore the [[floor function]] in the index. Similarly, one can also ignore the [[ceiling function]]. For example, <math>T(n) = n + T \left(\frac{1}{2} n \right)</math> and <math>T(n) = n + T \left(\left\lfloor \frac{1}{2} n \right\rfloor \right)</math> will, as per the Akra–Bazzi theorem, have the same asymptotic behavior.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)