Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Antilinear map
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions and characterizations == A function is called {{em|antilinear}} or {{em|conjugate linear}} if it is [[Additive map|additive]] and [[conjugate homogeneous]]. An {{em|antilinear functional}} on a vector space <math>V</math> is a scalar-valued antilinear map. A function <math>f</math> is called {{em|[[Additive map|additive]]}} if <math display=block>f(x + y) = f(x) + f(y) \quad \text{ for all vectors } x, y</math> while it is called {{em|[[Conjugate homogeneity|conjugate homogeneous]]}} if <math display=block>f(ax) = \overline{a} f(x) \quad \text{ for all vectors } x \text{ and all scalars } a.</math> In contrast, a linear map is a function that is additive and [[homogeneous]], where <math>f</math> is called {{em|homogeneous}} if <math display=block>f(ax) = a f(x) \quad \text{ for all vectors } x \text{ and all scalars } a.</math> An antilinear map <math>f : V \to W</math> may be equivalently described in terms of the [[linear map]] <math>\overline{f} : V \to \overline{W}</math> from <math>V</math> to the [[complex conjugate vector space]] <math>\overline{W}.</math> === Examples === ==== Anti-linear dual map ==== Given a complex vector space <math>V</math> of rank 1, we can construct an anti-linear dual map which is an anti-linear map <math display="block">l:V \to \Complex</math> sending an element <math>x_1 + iy_1</math> for <math>x_1,y_1 \in \R</math> to <math display="block">x_1 + iy_1 \mapsto a_1 x_1 - i b_1 y_1</math> for some fixed real numbers <math>a_1,b_1.</math> We can extend this to any finite dimensional complex vector space, where if we write out the standard basis <math>e_1, \ldots, e_n</math> and each standard basis element as <math display="block">e_k = x_k + iy_k</math> then an anti-linear complex map to <math>\Complex</math> will be of the form <math display="block">\sum_k x_k + iy_k \mapsto \sum_k a_k x_k - i b_k y_k</math> for <math>a_k,b_k \in \R.</math> ==== Isomorphism of anti-linear dual with real dual ==== The anti-linear dual<ref name=":0">{{Cite book|last=Birkenhake|first=Christina| url=https://www.worldcat.org/oclc/851380558 | title=Complex Abelian Varieties | date=2004 | publisher=Springer Berlin Heidelberg|others=Herbert Lange |isbn=978-3-662-06307-1| edition=Second, augmented| location=Berlin, Heidelberg| oclc=851380558}}</ref><sup>pg 36</sup> of a complex vector space <math>V</math> <math display="block">\operatorname{Hom}_{\overline{\Complex}}(V,\Complex)</math> is a special example because it is isomorphic to the real dual of the underlying real vector space of <math>V,</math> <math>\text{Hom}_\R(V,\R).</math> This is given by the map sending an anti-linear map <math display="block">\ell: V \to \Complex</math>to <math display="block">\operatorname{Im}(\ell) : V \to \R</math> In the other direction, there is the inverse map sending a real dual vector <math display="block">\lambda : V \to \R</math> to <math display="block">\ell(v) = -\lambda(iv) + i\lambda(v)</math> giving the desired map.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)