Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Aperture masking interferometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Description== In the aperture masking technique, the [[speckle masking|bispectral analysis]] (speckle masking) method is typically applied to image data taken through masked apertures, where most of the aperture is blocked off and light can only pass through a series of small holes (subapertures). The aperture mask removes atmospheric noise from these measurements through the use of [[Closure phase|closure quantities]], allowing the bispectrum to be measured more quickly than for an un-masked aperture. For simplicity the aperture masks are usually either placed in front of the [[secondary mirror]] (e.g. Tuthill et al. 2000) or placed in a re-imaged aperture plane (e.g. Haniff et al. 1987; Young et al. 2000; Baldwin et al. 1986), as shown in Figure 1.a) . The masks are usually categorised either as non-redundant or partially redundant. Non-redundant masks consist of arrays of small holes where no two pairs of holes have the same separation vector (the same '''baseline''' β see [[aperture synthesis]]). Each pair of holes provides a set of fringes at a unique spatial frequency in the image plane. Partially redundant masks are usually designed to provide a compromise between minimizing the redundancy of spacings and maximizing both the throughput and the range of spatial frequencies investigated (Haniff & Buscher 1992; Haniff et al. 1989). Figures 1.b) and 1.c) show examples of aperture masks used in front of the secondary at the Keck telescope by Peter Tuthill and collaborators; Figure 1.b) is a non-redundant mask while Figure 1.c) is partially redundant. Although the signal-to-noise of [[speckle masking]] observations at high light level can be improved with aperture masks, the faintest limiting magnitude cannot be significantly improved for photon-noise limited detectors (see Buscher & Haniff 1993).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)