Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Associated Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition for non-negative integer parameters {{mvar|ℓ}} and {{mvar|m}}== These functions are denoted <math>P_\ell^{m}(x)</math>, where the superscript indicates the order and not a power of ''P''. Their most straightforward definition is in terms of derivatives of ordinary [[Legendre polynomials]] (''m'' ≥ 0) <math display="block"> P_\ell^{m}(x) = (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} \left( P_\ell(x) \right), </math> The {{math|(−1)<sup>''m''</sup>}} factor in this formula is known as the [[Spherical harmonics#Condon–Shortley phase|Condon–Shortley phase]]. Some authors omit it. That the functions described by this equation satisfy the general Legendre differential equation with the indicated values of the parameters ''ℓ'' and ''m'' follows by differentiating ''m'' times the Legendre equation for {{math|''P''<sub>''ℓ''</sub>}}:<ref>{{harvnb|Courant|Hilbert|1953|loc=V, §10}}.</ref> <math display="block">\left(1-x^2\right) \frac{d^2}{dx^2}P_\ell(x) -2x\frac{d}{dx}P_\ell(x)+ \ell(\ell+1)P_\ell(x) = 0.</math> Moreover, since by [[Rodrigues' formula]], <math display="block">P_\ell(x) = \frac{1}{2^\ell\,\ell!} \ \frac{d^\ell}{dx^\ell}\left[(x^2-1)^\ell\right],</math> the ''P''{{su|b=''ℓ''|p=''m''}} can be expressed in the form <math display="block">P_\ell^{m}(x) = \frac{(-1)^m}{2^\ell \ell!} (1-x^2)^{m/2}\ \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^\ell.</math> This equation allows extension of the range of ''m'' to: {{math|−''ℓ'' ≤ ''m'' ≤ ''ℓ''}}. The definitions of {{math|''P''<sub>''ℓ''</sub><sup>±''m''</sup>}}, resulting from this expression by substitution of {{math|±''m''}}, are proportional. Indeed, equate the coefficients of equal powers on the left and right hand side of <math display="block">\frac{d^{\ell-m}}{dx^{\ell-m}} (x^2-1)^{\ell} = c_{lm} (1-x^2)^m \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^{\ell},</math> then it follows that the proportionality constant is <math display="block">c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} ,</math> so that <math display="block">P^{-m}_\ell(x) = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} P^{m}_\ell(x).</math> ===Alternative notations=== The following alternative notations are also used in literature:<ref>{{Abramowitz_Stegun_ref|8|332}}</ref> <math display="block">P_{\ell m}(x) = (-1)^m P_\ell^{m}(x) </math> ===Closed Form=== Starting from the explicit form provided in the article of [[Legendre polynomials|Legendre Polynomials]] <math> P_l(x)=2^l\sum_{k=0}^l x^k\binom{l}{k}\binom{(l+k-1)/2}{l} </math> one obtains with the standard rules for <math>m</math>-fold derivatives for powers <math display="block"> P_l^m(x)=(-1)^{m} \cdot 2^{l} \cdot (1-x^2)^{m/2} \cdot \sum_{k=m}^l \frac{k!}{(k-m)!}\cdot x^{k-m} \cdot \binom{l}{k} \binom{\frac{l+k-1}{2}}{l} </math> with simple monomials and the [[Binomial coefficient#Generalization and connection to the binomial series|generalized form of the binomial coefficient]]. The sum effectively extends only over terms where <math>l-k</math> is even, because for odd <math>l-k</math> the binomial factor <math>\binom{(l+k-1)/2}{l}</math> is zero. Summarizing results of Doha <ref>{{Cite journal |last=Doha |first=E. H. |year=1991|title=The coefficients of differentiated expansions and derivatives of ultraspherical polynomials |journal=Computers & Mathematics with Applications |volume=21 |issue=2 |pages=115–122 |doi=10.1016/0898-1221(91)90089-M |issn=0898-1221}}</ref> the expansion of derivatives into Legendre Polynomials defines coefficients <math>\tau</math> <math> \frac{d^m}{dx^m}P_l(x) = \sum_{t=0}^{\lfloor (l-m)/2\rfloor} \tau_{l,m,t} P_{l-m-2t}(x) , </math> where <math> \tau_{l,m,t} = \epsilon_{l-t} \frac{l-m-2t+1/2}{2l-2t+1}\frac{(2m)!}{2^mm!} \binom{2l-2t+1}{2m} \frac{m}{m+t}\binom{m+t}{t} \frac{1}{\binom{l-t}{m}} , </math> and where <math> \epsilon_q\equiv \begin{cases} 1, & q=0;\\ 2, & q\ge 1 \end{cases} </math> is the Neumann factor.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)