Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bayesian network
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Graphical model== Formally, Bayesian networks are [[directed acyclic graph]]s (DAGs) whose nodes represent variables in the [[Bayesian probability|Bayesian]] sense: they may be observable quantities, [[latent variable]]s, unknown parameters or hypotheses. Each edge represents a direct conditional dependency. Any pair of nodes that are not connected (i.e. no path connects one node to the other) represent variables that are [[conditional independence|conditionally independent]] of each other. Each node is associated with a [[Probability distribution|probability function]] that takes, as input, a particular set of values for the node's [[Glossary of graph theory#Directed acyclic graphs|parent]] variables, and gives (as output) the probability (or probability distribution, if applicable) of the variable represented by the node. For example, if <math>m</math> parent nodes represent <math>m</math> [[Boolean data type|Boolean variables]], then the probability function could be represented by a table of <small><math>2^m</math></small> entries, one entry for each of the <small><math>2^m</math></small> possible parent combinations. Similar ideas may be applied to undirected, and possibly cyclic, graphs such as [[Markov network]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)