Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bell polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions== ===Exponential Bell polynomials=== The ''partial'' or ''incomplete'' exponential Bell polynomials are a [[triangular array]] of polynomials given by :<math>\begin{align} B_{n,k}(x_1,x_2,\dots,x_{n-k+1}) &= \sum{n! \over j_1!j_2!\cdots j_{n-k+1}!} \left({x_1\over 1!}\right)^{j_1}\left({x_2\over 2!}\right)^{j_2}\cdots\left({x_{n-k+1} \over (n-k+1)!}\right)^{j_{n-k+1}} \\ &= n! \sum \prod_{i=1}^{n-k+1} \frac{x_i^{j_i}}{(i!)^{j_i} j_i!}, \end{align}</math> where the sum is taken over all sequences ''j''<sub>1</sub>, ''j''<sub>2</sub>, ''j''<sub>3</sub>, ..., ''j''<sub>''n''β''k''+1</sub> of non-negative integers such that these two conditions are satisfied: :<math>j_1 + j_2 + \cdots + j_{n-k+1} = k, </math> :<math>j_1 + 2 j_2 + 3 j_3 + \cdots + (n-k+1)j_{n-k+1} = n.</math> The sum :<math>\begin{align} B_n(x_1,\dots,x_n)&=\sum_{k=1}^n B_{n,k}(x_1,x_2,\dots,x_{n-k+1})\\ &=n! \sum_{1j_1 +\ldots+ nj_n=n} \prod_{i=1}^n \frac{x_i^{j_i}}{(i!)^{j_i}j_i!} \end{align}</math> is called the ''n''th ''complete exponential Bell polynomial''. ===Ordinary Bell polynomials=== Likewise, the partial ''ordinary'' Bell polynomial is defined by :<math>\hat{B}_{n,k}(x_1,x_2,\ldots,x_{n-k+1}) = \sum \frac{k!}{j_1! j_2! \cdots j_{n-k+1}!} x_1^{j_1} x_2^{j_2} \cdots x_{n-k+1}^{j_{n-k+1}}, </math> where the sum runs over all sequences ''j''<sub>1</sub>, ''j''<sub>2</sub>, ''j''<sub>3</sub>, ..., ''j''<sub>''n''β''k''+1</sub> of non-negative integers such that :<math>j_1 + j_2 + \cdots + j_{n-k+1} = k,</math> :<math>j_1 + 2 j_2 + \cdots + (n-k+1)j_{n-k+1} = n.</math> Thanks to the first condition on indices, we can rewrite the formula as :<math>\hat{B}_{n,k}(x_1,x_2,\ldots,x_{n-k+1}) = \sum \binom{k}{j_1, j_2, \ldots, j_{n-k+1}} x_1^{j_1} x_2^{j_2} \cdots x_{n-k+1}^{j_{n-k+1}}, </math> where we have used the [[Multinomial theorem|multinomial coefficient]]. The ordinary Bell polynomials can be expressed in the terms of exponential Bell polynomials: :<math>\hat{B}_{n,k}(x_1,x_2,\ldots,x_{n-k+1}) = \frac{k!}{n!}B_{n,k}(1!\cdot x_1,2!\cdot x_2,\ldots,(n-k+1)!\cdot x_{n-k+1}).</math> In general, Bell polynomial refers to the exponential Bell polynomial, unless otherwise explicitly stated.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)