Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beth number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Beth numbers are defined by [[transfinite recursion]]: * <math>\beth_0 = \aleph_0,</math> * <math>\beth_{\alpha+1} = 2^{\beth_\alpha},</math> * <math>\beth_\lambda = \sup\Bigl\{ \beth_\alpha : \alpha < \lambda \Bigr\},</math> where <math>\alpha</math> is an ordinal and <math>\lambda</math> is a [[limit ordinal]].<ref>{{cite book |last=Jech |first=Thomas |year=2002 |title=Set Theory |edition=3rd |quote = Millennium ed, rev. and expanded. Corrected 4th printing 2006. |location= |publisher=Springer |page=55 |isbn=978-3-540-44085-7 }}</ref> The cardinal <math>\beth_0 = \aleph_0</math> is the cardinality of any [[countably infinite]] [[set (mathematics)|set]] such as the set <math>\mathbb{N}</math> of [[natural number]]s, so that <math>\beth_0 = |\mathbb{N}|</math>. Let <math>\alpha</math> be an [[ordinal number|ordinal]], and <math>A_\alpha</math> be a set with cardinality <math>\beth_\alpha = |A_\alpha|</math>. Then, * <math>\mathcal{P}(A_\alpha)</math> denotes the [[power set]] of <math>A_\alpha</math> (i.e., the set of all subsets of <math>A_\alpha</math>), * the set <math>2^{A_\alpha} \subset \mathcal{P}(A_\alpha \times 2)</math> denotes the set of all functions from <math>A_\alpha</math> to <math>\{0, 1\}</math>, * the cardinal <math>2^{\beth_\alpha}</math> is the result of [[cardinal exponentiation]], and * <math>\beth_{\alpha+1} = 2^{\beth_\alpha} = \left| 2^{A_\alpha} \right| = |\mathcal{P}(A_\alpha)|</math> is the cardinality of the power set of <math>A_\alpha</math>. Given this definition, :<math>\beth_0, \beth_1, \beth_2, \beth_3, \dots</math> are respectively the cardinalities of :<math>\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))), \dots</math> so that the second beth number <math>\beth_1</math> is equal to <math>\mathfrak{c}</math>, the [[cardinality of the continuum]] (the cardinality of the set of the [[real number]]s), and the third beth number <math>\beth_2</math> is the cardinality of the power set of the continuum. Because of [[Cantor's theorem]], each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite [[limit ordinal]]s <math>\lambda</math>, the corresponding beth number is defined to be the [[supremum]] of the beth numbers for all ordinals strictly smaller than <math>\lambda</math>: :<math>\beth_\lambda = \sup \Bigl\{ \beth_{\alpha} : \alpha < \lambda \Bigr\}.</math> One can show that this definition is equivalent to :<math>\beth_\lambda = |\bigcup \Bigl\{ A_{\alpha} : \alpha < \lambda \Bigr\}|.</math> For instance: *<math>\beth_\omega</math> is the cardinality of <math>\bigcup \Bigl\{\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))), \dots \Bigr\}</math>. *<math>\beth_{\omega2}</math> is the cardinality of <math>\bigcup \Bigl\{\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))), \dots, {A_\omega}, \mathcal{P}({A_\omega}), \mathcal{P}(\mathcal{P}({A_\omega})), \mathcal{P}(\mathcal{P}(\mathcal{P}({A_\omega}))), \dots\Bigr\}</math>. *<math>\beth_{\omega^2}</math> is the cardinality of <math>\bigcup \Bigl\{\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))), \dots, {A_\omega}, \mathcal{P}({A_\omega}), \mathcal{P}(\mathcal{P}({A_\omega})), \dots, {A_{\omega2}}, \mathcal{P}({A_{\omega2}}), \mathcal{P}(\mathcal{P}({A_{\omega2}})), \dots, </math> <math> {A_{\omega3}}, \mathcal{P}({A_{\omega3}}), \mathcal{P}(\mathcal{P}({A_{\omega3}})), \dots, \dots \Bigr\}</math>. This equivalence can be shown by seeing that: *for any set <math>\mathbb{S}</math>, the union set of all its members can be no larger than the supremum of its member cardinalities times its own cardinality, <math>|\bigcup\mathbb{S}|\le \Bigl(|\mathbb{S}| \times \sup\Bigl\{|s|:s\in\mathbb{S}\Bigr\}\Bigr)</math> *for any two non-zero cardinalities <math>\kappa_a, \kappa_b</math>, if at least one of them is an infinite cardinality, then the product will be the larger of the two, <math>\kappa_a \times \kappa_b = \max\{\kappa_a, \kappa_b\}</math> *the set <math>\Bigl\{ A_{\alpha} : \alpha < \lambda \Bigr\}</math> will be smaller than most or all of its subsets for any limit ordinal <math>\lambda</math> *therefore, <math>|\bigcup\Bigl\{ A_{\alpha} : \alpha < \lambda \Bigr\}|=\sup \Bigl\{ \beth_{\alpha} : \alpha < \lambda \Bigr\}</math> for any limit ordinal <math>\lambda</math> Note that this behavior is different from that of successor ordinals. Cardinalities less than <math>\beth_\beta</math> but greater than any <math>\beth_\alpha: \alpha<\beta</math> can exist when <math>\beta</math> is a successor ordinal (in that case, the existence is undecidable in ZFC and controlled by the [[Generalized Continuum Hypothesis]]); but cannot exist when <math>\beta</math> is a limit ordinal, even under the second definition presented. One can also show that the [[von Neumann universe]]s <math>V_{\omega+\alpha}</math> have cardinality <math>\beth_{\alpha}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)