Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bin packing problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formal statement== In ''[[Computers and Intractability]]''<ref name="GareyJohnson2">{{cite book|last1=Garey|first1=M. R.|title=<!-- [[ -->Computers and Intractability: A Guide to the Theory of NP-Completeness<!-- ]] -->|last2=Johnson|first2=D. S.|publisher=W. H. Freeman and Co.|year=1979|isbn=0-7167-1045-5|editor=Victor Klee|editor-link=Victor Klee|series=A Series of Books in the Mathematical Sciences|location=San Francisco, Calif.|pages=[https://archive.org/details/computersintract0000gare/page/ x+338]|mr=519066|author-link1=Michael R. Garey|author-link2=David S. Johnson}}</ref>{{Rp|226}} Garey and Johnson list the bin packing problem under the reference [SR1]. They define its decision variant as follows. Instance: Finite set <math>I</math> of items, a size <math>s(i) \in \mathbb{Z}^+</math> for each <math>i \in I</math>, a positive integer bin capacity <math>B</math>, and a positive integer <math>K</math>. Question: Is there a partition of <math>I</math> into [[disjoint sets]] <math>I_1,\dots, I_K</math> such that the sum of the sizes of the items in each <math>I_j</math> is <math>B</math> or less? Note that in the literature often an alternate, but not equivalent, notation is used, where <math>B = 1</math> and <math>s(i) \in \mathbb{Q} \cap (0,1]</math> for each <math>i \in I</math>. Furthermore, research is mostly interested in the optimization variant, which asks for the smallest possible value of <math>K</math>. A solution is ''optimal'' if it has minimal <math>K</math>. The <math>K</math>-value for an optimal solution for a set of items <math>I</math> is denoted by <math>\mathrm{OPT}(I)</math> or just <math>\mathrm{OPT}</math> if the set of items is clear from the context. A possible [[Integer programming|integer linear programming]] formulation of the problem is: {| | colspan="2" |minimize <math> K = \sum_{j=1}^n y_j</math> | |- |subject to |<math>K \geq 1,</math> |- | |<math>\sum_{i \in I} s(i) x_{ij} \leq B y_j,</math> |<math>\forall j \in \{1,\ldots,n\}</math> |- | |<math>\sum_{j=1}^n x_{ij} = 1,</math> |<math>\forall i \in I</math> |- | |<math> y_j \in \{0,1\},</math> |<math>\forall j \in \{1,\ldots,n\}</math> |- | |<math> x_{ij} \in \{0,1\},</math> |<math>\forall i \in I \, \forall j \in \{1,\ldots,n\}</math> |} where <math> y_j = 1</math> if bin <math>j</math> is used and <math> x_{ij} = 1</math> if item <math>i</math> is put into bin <math>j</math>.<ref name="Martello19902">{{harvnb|Martello|Toth|1990|p=221}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)