Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binomial series
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Convergence == === Conditions for convergence === Whether ({{EquationNote|1}}) [[convergent series|converges]] depends on the values of the complex numbers {{mvar|α}} and {{mvar|x}}. More precisely: #If {{math|{{!}}''x''{{!}} < 1}}, the series converges [[absolute convergence|absolutely]] for any complex number {{mvar|α}}. #If {{math|1={{!}}''x''{{!}} = 1}}, the series converges absolutely [[if and only if]] either {{math|Re(''α'') > 0}} or {{math|1=''α'' = 0}}, where {{math|Re(''α'')}} denotes the [[complex number|real part]] of {{mvar|α}}. # If {{math|1={{!}}''x''{{!}} = 1}} and {{math|''x'' ≠ −1}}, the series converges if and only if {{math|Re(''α'') > −1}}. #If {{math|1=''x'' = −1}}, the series converges if and only if either {{math|Re(''α'') > 0}} or {{math|1=''α'' = 0}}. #If {{math|{{!}}''x''{{!}} > 1}}, the series [[divergent series|diverges]] except when {{mvar|α}} is a non-negative integer, in which case the series is a finite sum. In particular, if {{mvar|α}} is not a non-negative integer, the situation at the boundary of the [[radius of convergence|disk of convergence]], {{math|1={{abs|''x''}} = 1}}, is summarized as follows: * If {{math|Re(''α'') > 0}}, the series converges absolutely. * If {{math|−1 < Re(''α'') ≤ 0}}, the series converges [[conditional convergence|conditionally]] if {{math|''x'' ≠ −1}} and diverges if {{math|1=''x'' = −1}}. * If {{math|Re(''α'') ≤ −1}}, the series diverges. === Identities to be used in the proof === The following hold for any complex number {{mvar|α}}: :<math>{\alpha \choose 0} \!= 1,</math> {{NumBlk|:|<math> {\alpha \choose k+1} \!= \!{\alpha\choose k} \frac{\alpha-k}{k+1}, </math>|{{EquationRef|2}}}} {{NumBlk|:|<math> {\alpha \choose k-1} \!+ \!{\alpha\choose k} \!= \!{\alpha+1 \choose k}. </math>|{{EquationRef|3}}}} Unless <math>\alpha</math> is a nonnegative integer (in which case the binomial coefficients vanish as <math>k</math> is larger than <math>\alpha</math>), a useful [[asymptotic analysis|asymptotic]] relationship for the binomial coefficients is, in [[Landau notation]]: {{NumBlk|:|<math> {\alpha \choose k} \!= \frac{(-1)^k} {\Gamma(-\alpha)k^ {1+\alpha} } \,(1+o(1)), \quad\text{as }k\to\infty. </math>|{{EquationRef|4}}}} This is essentially equivalent to Euler's definition of the [[Gamma function]]: :<math>\Gamma(z) = \lim_{k \to \infty} \frac{k! \,k^z}{z(z+1)\cdots(z+k)}, </math> and implies immediately the coarser bounds {{NumBlk|:|<math> \frac {m} {k^{1+\operatorname{Re}\,\alpha}}\le \left|{\alpha \choose k}\right| \le \frac {M} {k^{1+\operatorname{Re}\alpha}}, </math>|{{EquationRef|5}}}} for some positive constants {{mvar|m}} and {{mvar|M}} . Formula ({{EquationNote|2}}) for the generalized binomial coefficient can be rewritten as {{NumBlk|:|<math> {\alpha \choose k} \!= \prod_{j=1}^k \!\left(\frac{\alpha + 1}j - 1 \right). </math>|{{EquationRef|6}}}} === Proof === To prove (i) and (v), apply the [[ratio test]] and use formula ({{EquationNote|2}}) above to show that whenever <math>\alpha</math> is not a nonnegative integer, the [[radius of convergence]] is exactly 1. Part (ii) follows from formula ({{EquationNote|5}}), by comparison with the [[Convergence tests#p-series test|{{mvar|p}}-series]] :<math> \sum_{k=1}^\infty \frac1{k^p}, </math> with <math>p=1+\operatorname{Re}(\alpha)</math>. To prove (iii), first use formula ({{EquationNote|3}}) to obtain {{NumBlk|:|<math>(1 + x) \sum_{k=0}^n \!{\alpha \choose k} x^k =\sum_{k=0}^n \!{\alpha+1\choose k} x^k + {\alpha \choose n} x^{n+1}, </math>|{{EquationRef|7}}}} and then use (ii) and formula ({{EquationNote|5}}) again to prove convergence of the right-hand side when <math> \operatorname{Re}(\alpha)> - 1 </math> is assumed. On the other hand, the series does not converge if <math>|x|=1</math> and <math> \operatorname{Re}(\alpha) \le - 1 </math>, again by formula ({{EquationNote|5}}). Alternatively, we may observe that for all <math>j</math>, <math display="inline"> \left| \frac{\alpha + 1}j - 1 \right| \ge 1 - \frac{\operatorname{Re} (\alpha) + 1}j \ge 1 </math>. Thus, by formula ({{EquationNote|6}}), for all <math display="inline"> k, \left|{\alpha \choose k} \right| \ge 1 </math>. This completes the proof of (iii). Turning to (iv), we use identity ({{EquationNote|7}}) above with <math>x=-1</math> and <math>\alpha-1</math> in place of <math>\alpha</math>, along with formula ({{EquationNote|4}}), to obtain :<math>\sum_{k=0}^n \!{\alpha\choose k} (-1)^k = \!{\alpha-1 \choose n} (-1)^n= \frac1{\Gamma(-\alpha+1)n^\alpha} (1+o(1))</math> as <math>n\to\infty</math>. Assertion (iv) now follows from the asymptotic behavior of the sequence <math>n^{-\alpha} = e^{-\alpha \log(n)}</math>. (Precisely, <math> \left|e^{-\alpha\log n}\right| = e^{-\operatorname{Re}(\alpha) \log n}</math> certainly converges to <math>0</math> if <math>\operatorname{Re}(\alpha)>0</math> and diverges to <math>+\infty</math> if <math>\operatorname{Re}(\alpha)<0</math>. If <math>\operatorname{Re}(\alpha)=0</math>, then <math>n^{-\alpha} = e^{-i \operatorname{Im}(\alpha)\log n}</math> converges if and only if the sequence <math> \operatorname{Im}(\alpha)\log n </math> converges <math>\bmod{2\pi}</math>, which is certainly true if <math>\alpha=0</math> but false if <math>\operatorname{Im}(\alpha) \ne 0</math>: in the latter case the sequence is dense <math>\!\bmod{2\pi}</math>, due to the fact that <math>\log n</math> diverges and <math>\log (n+1)-\log n</math> converges to zero).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)