Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Biophysics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Overview== [[Molecular biophysics]] typically addresses biological questions similar to those in [[biochemistry]] and [[molecular biology]], seeking to find the physical underpinnings of biomolecular phenomena. Scientists in this field conduct research concerned with understanding the interactions between the various systems of a cell, including the interactions between [[DNA]], [[RNA]] and [[protein biosynthesis]], as well as how these interactions are regulated. A great variety of techniques are used to answer these questions. [[Image:Protein translation.gif|thumb|300px| A [[ribosome]] is a [[biological machine]]. [[Protein domain dynamics]] can only be seen by [[neutron spin echo]] spectroscopy ]] [[Fluorescent]] imaging techniques, as well as [[electron microscopy]], [[x-ray crystallography]], [[NMR spectroscopy]], [[atomic force microscopy]] (AFM) and [[small-angle scattering]] (SAS) both with [[Small-angle X-ray scattering|X-rays]] and [[Small-angle neutron scattering|neutrons]] (SAXS/SANS) are often used to visualize structures of biological significance. [[Protein dynamics]] can be observed by [[neutron spin echo]] spectroscopy. [[Conformational change]] in structure can be measured using techniques such as [[dual polarisation interferometry]], [[circular dichroism]], [[SAXS]] and [[Small-angle neutron scattering|SANS]]. Direct manipulation of molecules using [[optical tweezers]] or [[Atomic force microscopy|AFM]], can also be used to monitor biological events where forces and distances are at the nanoscale. Molecular biophysicists often consider complex biological events as systems of interacting entities which can be understood e.g. through [[statistical mechanics]], [[thermodynamics]] and [[chemical kinetics]]. By drawing knowledge and experimental techniques from a wide variety of disciplines, biophysicists are often able to directly observe, model or even manipulate the structures and interactions of individual [[molecules]] or complexes of molecules. In addition to traditional (i.e. molecular and cellular) biophysical topics like [[structural biology]] or [[enzyme kinetics]], modern biophysics encompasses an extraordinarily broad range of research, from [[bioelectronics]] to [[quantum biology]] involving both experimental and theoretical tools. It is becoming increasingly common<ref name=":0" /> for biophysicists to apply the models and experimental techniques derived from [[physics]], as well as [[mathematics]] and [[statistics]], to larger systems such as [[Tissue (biology)|tissues]], [[organ (anatomy)|organs]],<ref>{{cite journal|last1=Sahai|first1=Erik|last2=Trepat|first2=Xavier|date=July 2018|title=Mesoscale physical principles of collective cell organization|journal=Nature Physics|volume=14|issue=7|pages=671β682|doi=10.1038/s41567-018-0194-9|bibcode=2018NatPh..14..671T|hdl=2445/180672|s2cid=125739111|issn=1745-2481|hdl-access=free}}</ref> [[population biology|populations]]<ref>{{cite journal|last=Popkin|first=Gabriel|date=2016-01-07|title=The physics of life|journal=Nature News|volume=529|issue=7584|pages=16β18|doi=10.1038/529016a|pmid=26738578|bibcode=2016Natur.529...16P|doi-access=free}}</ref> and [[ecosystems]]. Biophysical models are used extensively in the study of electrical conduction in single [[neurons]], as well as neural circuit analysis in both tissue and whole brain.{{cn|date=April 2025}} [[Medical physics]], a branch of biophysics, is any application of [[physics]] to [[medicine]] or [[healthcare]], ranging from [[radiology]] to [[microscopy]] and [[nanomedicine]]. For example, physicist [[Richard Feynman]] theorized about the future of [[nanomedicine]]. He wrote about the idea of a ''medical'' use for [[biological machine]]s (see [[nanomachines]]). Feynman and [[Albert Hibbs]] suggested that certain repair machines might one day be reduced in size to the point that it would be possible to (as Feynman put it) "[[Biological machine|swallow the doctor]]". The idea was discussed in Feynman's 1959 essay ''[[There's Plenty of Room at the Bottom]].<ref>{{cite web | url = http://www.its.caltech.edu/~feynman/plenty.html | title = There's Plenty of Room at the Bottom | first = Richard P. | last = Feynman | name-list-style = vanc | date = December 1959 | access-date = 2017-01-01 | archive-url = https://web.archive.org/web/20100211190050/http://www.its.caltech.edu/~feynman/plenty.html | archive-date = 2010-02-11 | url-status = dead }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)