Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bistability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mathematical modelling== In the mathematical language of [[Dynamical systems theory|dynamic systems analysis]], one of the simplest bistable systems is{{citation needed|date=December 2022}} :<math> \frac{dy}{dt} = y (1-y^2). </math> This system describes a ball rolling down a curve with shape <math>\frac{y^4}{4} - \frac{y^2}{2}</math>, and has three equilibrium points: <math> y = 1 </math>, <math> y = 0 </math>, and <math> y = -1</math>. The middle point <math>y=0</math> is [[Marginal stability|marginally stable]] (<math> y = 0 </math> is stable but <math> y \approx 0 </math> will not converge to <math> y = 0 </math>), while the other two points are stable. The direction of change of <math>y(t)</math> over time depends on the initial condition <math>y(0)</math>. If the initial condition is positive (<math>y(0)>0</math>), then the solution <math>y(t)</math> approaches 1 over time, but if the initial condition is negative (<math>y(0)< 0</math>), then <math>y(t)</math> approaches β1 over time. Thus, the dynamics are "bistable". The final state of the system can be either <math> y = 1 </math> or <math> y = -1 </math>, depending on the initial conditions.<ref name="Chong">{{cite journal | author = Ket Hing Chong | author2 = Sandhya Samarasinghe | author3 = Don Kulasiri | author4 = Jie Zheng | name-list-style = amp | year = 2015| title = Computational techniques in mathematical modelling of biological switches | journal = Modsim2015 | pages = 578β584 }} For detailed techniques of mathematical modelling of bistability, see the tutorial by Chong et al. (2015) http://www.mssanz.org.au/modsim2015/C2/chong.pdf The tutorial provides a simple example illustration of bistability using a synthetic toggle switch proposed in {{cite journal |last1=Collins |first1=James J. |author-link1=James Collins (bioengineer)|last2=Gardner |first2=Timothy S. |last3=Cantor |first3=Charles R. |title=Construction of a genetic toggle switch in Escherichia coli |journal=Nature |volume=403 |issue=6767 |pages=339β42 |year=2000 |pmid=10659857 |doi=10.1038/35002131 |bibcode=2000Natur.403..339G |s2cid=345059 }}. The tutorial also uses the dynamical system software XPPAUT http://www.math.pitt.edu/~bard/xpp/xpp.html to show practically how to see bistability captured by a saddle-node bifurcation diagram and the hysteresis behaviours when the bifurcation parameter is increased or decreased slowly over the tipping points and a protein gets turned 'On' or turned 'Off'.</ref> The appearance of a bistable region can be understood for the model system <math> \frac{dy}{dt} = y (r-y^2) </math> which undergoes a supercritical [[pitchfork bifurcation]] with [[Bifurcation theory|bifurcation parameter]] <math> r </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)