Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Boole's inequality
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proof== === Proof using induction === Boole's inequality may be proved for finite collections of <math>n</math> events using the method of [[Mathematical induction|induction]].{{citation needed|date=February 2025}} For the <math>n=1</math> case, it follows that :<math>\mathbb P(A_1) \le \mathbb P(A_1).</math> For the case <math>n</math>, we have :<math>{\mathbb P}\left(\bigcup_{i=1}^{n} A_i \right) \le \sum_{i=1}^{n} {\mathbb P}(A_i).</math> Since <math>\mathbb P(A \cup B) = \mathbb P(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B),</math> and because the union operation is [[associative]], we have :<math>\mathbb{P}\left(\bigcup_{i=1}^{n+1}A_i\right) = \mathbb{P}\left(\bigcup_{i=1}^n A_i\right) + \mathbb{P}(A_{n+1}) -\mathbb{P}\left(\bigcup_{i=1}^n A_i \cap A_{n+1}\right).</math> Since :<math>{\mathbb P}\left(\bigcup_{i=1}^n A_i \cap A_{n+1}\right) \ge 0,</math> by the [[Probability Axioms#First axiom|first axiom of probability]], we have :<math>\mathbb{P}\left(\bigcup_{i=1}^{n+1} A_i \right) \le \mathbb{P} \left(\bigcup_{i=1}^n A_i\right) + \mathbb{P}(A_{n+1}),</math> and therefore :<math>\mathbb{P}\left(\bigcup_{i=1}^{n+1} A_i \right) \le \sum_{i=1}^{n} \mathbb{P}(A_i) + \mathbb{P}(A_{n+1}) = \sum_{i=1}^{n+1} \mathbb{P}(A_i).</math> === Proof without using induction === Let events <math>A_1, A_2, A_3, \dots </math>in our [[probability space]] be given. The countable additivity of the measure <math>\mathbb{P}</math> states that if <math>B_1, B_2, B_3, \dots</math> are pairwise disjoint events, then :<math>\mathbb{P}\left(\bigcup_{i} B_i\right) = \sum_i \mathbb P(B_i).</math> Set :<math>B_i := A_i - \bigcup^{i-1}_{j=1} A_j.</math> Then <math>B_1, B_2, B_3, \dots</math> are pairwise disjoint. We claim that: :<math>\bigcup^{\infty}_{i=1} A_i = \bigcup^{\infty}_{i=1} B_i.</math> One inclusion is clear. Indeed, since <math>B_i \subset A_i</math> for all i, thus <math>\bigcup^{\infty}_{i=1} B_i \subset \bigcup^{\infty}_{i=1} A_i</math>. For the other inclusion, let <math>x \in \bigcup^{\infty}_{i=1} A_i</math> be given. Write <math>k</math> for the minimum positive [[integer]] such that <math>x \in A_k</math>. Then <math>x \in A_k - \bigcup^{k-1}_{j=1} A_j = B_k</math>. Thus <math>x \in \bigcup^{\infty}_{i=1} B_i</math>. Therefore <math>\bigcup^{\infty}_{i=1} A_i \subset \bigcup^{\infty}_{i=1} B_i</math>. Therefore :<math>\mathbb P\left(\bigcup_iA_i\right) = \mathbb P\left(\bigcup_iB_i\right) = \sum_i \mathbb P (B_i) \leq \sum_i \mathbb P(A_i),</math> where the last inequality holds because <math>B_i \subset A_i</math> implies that <math>\mathbb P (B_i) \leq \mathbb P(A_i),</math> for all i.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)