Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Butterfly theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proof== [[File:Butterfly1.svg|thumb|upright=1.0|{{center|Proof of Butterfly theorem}}]] A formal proof of the theorem is as follows: Let the [[perpendiculars]] {{math|''XX′''}} and {{math|''XX″''}} be dropped from the point {{math|''X''}} on the straight lines {{math|''AM''}} and {{math|''DM''}} respectively. Similarly, let {{math|''YY′''}} and {{math|''YY″''}} be dropped from the point {{math|''Y''}} perpendicular to the straight lines {{math|''BM''}} and {{math|''CM''}} respectively. Since :: <math> \triangle MXX' \sim \triangle MYY',</math> : <math> {MX \over MY} = {XX' \over YY'}, </math> :: <math> \triangle MXX'' \sim \triangle MYY'',</math> : <math> {MX \over MY} = {XX'' \over YY''}, </math> :: <math> \triangle AXX' \sim \triangle CYY'',</math> : <math> {XX' \over YY''} = {AX \over CY}, </math> :: <math> \triangle DXX'' \sim \triangle BYY',</math> :<math> {XX'' \over YY'} = {DX \over BY}. </math> From the preceding equations and the [[intersecting chords theorem]], it can be seen that : <math> \left({MX \over MY}\right)^2 = {XX' \over YY' } {XX'' \over YY''}, </math> : <math> {} = {AX \cdot DX \over CY \cdot BY}, </math> : <math> {} = {PX \cdot QX \over PY \cdot QY}, </math> : <math> {} = {(PM-XM) \cdot (MQ+XM) \over (PM+MY) \cdot (QM-MY)}, </math> : <math> {} = { (PM)^2 - (MX)^2 \over (PM)^2 - (MY)^2}, </math> since {{math|''PM'' {{=}} ''MQ''}}. So, :<math> { (MX)^2 \over (MY)^2} = {(PM)^2 - (MX)^2 \over (PM)^2 - (MY)^2}. </math> Cross-multiplying in the latter equation, :<math> {(MX)^2 \cdot (PM)^2 - (MX)^2 \cdot (MY)^2} = {(MY)^2 \cdot (PM)^2 - (MX)^2 \cdot (MY)^2} . </math> Cancelling the common term :<math> { -(MX)^2 \cdot (MY)^2} </math> from both sides of the equation yields :<math> {(MX)^2 \cdot (PM)^2} = {(MY)^2 \cdot (PM)^2}, </math> hence {{math|''MX'' {{=}} ''MY''}}, since MX, MY, and PM are all positive, real numbers. Thus, {{math|''M''}} is the midpoint of {{math|''XY''}}. Other proofs exist,<ref>Martin Celli, "A Proof of the Butterfly Theorem Using the Similarity Factor of the Two Wings", ''[[Forum Geometricorum]]'' 16, 2016, 337–338. http://forumgeom.fau.edu/FG2016volume16/FG201641.pdf</ref> including one using [[projective geometry]].<ref>[http://www.imomath.com/index.php?options=628&lmm=0], problem 8.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)