Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cauchy–Euler equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The equation== Let {{math|''y''{{i sup|(''n'')}}(''x'')}} be the ''n''th derivative of the unknown function {{math|''y''(''x'')}}. Then a Cauchy–Euler equation of order ''n'' has the form <math display="block">a_{n} x^n y^{(n)}(x) + a_{n-1} x^{n-1} y^{(n-1)}(x) + \dots + a_0 y(x) = 0.</math> The substitution <math>x = e^u</math> (that is, <math>u = \ln(x)</math>; for <math>x < 0</math>, in which one might replace all instances of <math>x</math> by <math>|x|</math>, extending the solution's domain to <math>\reals \setminus \{0\}</math>) can be used to reduce this equation to a linear differential equation with constant coefficients. Alternatively, the trial solution <math>y = x^m</math> can be used to solve the equation directly, yielding the basic solutions.<ref name="kreyszig">{{cite book|last=Kreyszig|first=Erwin|title=Advanced Engineering Mathematics | publisher=Wiley|date=May 10, 2006|isbn=978-0-470-08484-7}}</ref> ===Second order – solving through trial solution=== [[File:Euler-Cauchy equation solution curves real roots.svg|thumb|400px|right|Typical solution curves for a second-order Euler–Cauchy equation for the case of two real roots]] [[File:Euler-Cauchy equation solution curves double root.svg|thumb|400px|right|Typical solution curves for a second-order Euler–Cauchy equation for the case of a double root]] [[File:Euler-Cauchy_equation_solution_curves_complex_roots.svg|thumb|400px|right|Typical solution curves for a second-order Euler–Cauchy equation for the case of complex roots]] The most common Cauchy–Euler equation is the second-order equation, which appears in a number of physics and engineering applications, such as when solving [[Laplace's equation]] in polar coordinates. The second order Cauchy–Euler equation is<ref name="kreyszig" /><ref>{{Cite book|title=Elementary Differential Equations and Boundary Value Problems|last1=Boyce|first1=William E.| pages=272–273|last2=DiPrima|first2=Richard C.|editor-last=Rosatone|editor-first=Laurie|edition=10th|year=2012| isbn=978-0-470-45831-0}}</ref> <math display="block">x^2\frac{d^2y}{dx^2} + ax\frac{dy}{dx} + by = 0.</math> We assume a trial solution<ref name="kreyszig" /> <math display="block">y = x^m.</math> Differentiating gives <math display="block">\frac{dy}{dx} = mx^{m-1} </math> and <math display="block">\frac{d^2y}{dx^2} = m\left(m-1\right)x^{m-2}. </math> Substituting into the original equation leads to requiring that <math display="block">x^2\left( m\left(m-1 \right)x^{m-2} \right) + ax\left( mx^{m-1} \right) + b\left( x^m \right) = 0</math> Rearranging and factoring gives the indicial equation <math display="block">m^2 + \left(a-1\right)m + b = 0.</math> We then solve for ''m''. There are three cases of interest: * Case 1 of two distinct roots, {{math|''m''<sub>1</sub>}} and {{math|''m''<sub>2</sub>}}; * Case 2 of one real repeated root, {{mvar|m}}; * Case 3 of complex roots, {{math|''α'' ± ''βi''}}. In case 1, the solution is <math display="block">y = c_1 x^{m_1} + c_2 x^{m_2}</math> In case 2, the solution is <math display="block">y = c_1 x^m \ln(x) + c_2 x^m </math> To get to this solution, the method of [[reduction of order]] must be applied, after having found one solution {{math|1=''y'' = ''x''{{i sup|''m''}}}}. In case 3, the solution is <math display="block">y = c_1 x^\alpha \cos(\beta \ln(x)) + c_2 x^\alpha \sin(\beta \ln(x)) </math> <math display="block">\alpha = \operatorname{Re}(m)</math> <math display="block">\beta = \operatorname{Im}(m)</math> For <math>c_1, c_2 \isin \R</math>. This form of the solution is derived by setting {{math|1=''x'' = ''e''{{i sup|''t''}}}} and using [[Euler's formula]]. ===Second order – solution through change of variables=== <math display="block">x^2\frac{d^2y}{dx^2} +ax\frac{dy}{dx} + by = 0 </math> We operate the variable substitution defined by <math display="block">t = \ln(x). </math> <math display="block">y(x) = \varphi(\ln(x)) = \varphi(t). </math> Differentiating gives <math display="block">\frac{dy}{dx}=\frac{1}{x}\frac{d\varphi}{dt}</math> <math display="block">\frac{d^2y}{dx^2}=\frac{1}{x^2}\left(\frac{d^2\varphi}{dt^2}-\frac{d\varphi}{dt}\right).</math> Substituting <math>\varphi(t)</math> the differential equation becomes <math display="block">\frac{d^2\varphi}{dt^2} + (a-1)\frac{d\varphi}{dt} + b\varphi = 0.</math> This equation in <math>\varphi(t)</math> is solved via its characteristic polynomial <math display="block">\lambda^2 + (a-1)\lambda + b = 0.</math> Now let <math>\lambda_1</math> and <math>\lambda_2</math> denote the two roots of this polynomial. We analyze the case in which there are distinct roots and the case in which there is a repeated root: If the roots are distinct, the general solution is <math display="block">\varphi(t)=c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t},</math> where the exponentials may be complex. If the roots are equal, the general solution is <math display="block">\varphi(t)=c_1 e^{\lambda_1 t} + c_2 t e^{\lambda_1 t}.</math> In both cases, the solution <math>y(x)</math> can be found by setting <math>t = \ln(x)</math>. Hence, in the first case, <math display="block">y(x) = c_1 x^{\lambda_1} + c_2 x^{\lambda_2},</math> and in the second case, <math display="block">y(x) = c_1 x^{\lambda_1} + c_2 \ln(x) x^{\lambda_1}.</math> ===Second order - solution using differential operators=== Observe that we can write the second-order Cauchy-Euler equation in terms of a linear [[differential operator]] <math> L </math> as <math display="block">Ly = (x^2 D^2 + axD + bI)y = 0,</math> where <math> D = \frac{d}{dx} </math> and <math> I </math> is the identity operator. We express the above operator as a polynomial in <math> xD </math>, rather than <math> D </math>. By the product rule, <math display="block"> (x D)^2 = x D(x D) = x(D + x D^2) = x^2D^2 + x D.</math> So, <math display="block"> L = (xD)^2 + (a-1)(xD) + bI.</math> We can then use the quadratic formula to factor this operator into linear terms. More specifically, let <math> \lambda_1, \lambda_2 </math> denote the (possibly equal) values of <math display="block">-\frac{a-1}{2} \pm \frac{1}{2}\sqrt{(a-1)^2 - 4b}. </math> Then, <math display="block">L = (xD - \lambda_1 I)(xD - \lambda_2 I).</math> It can be seen that these factors commute, that is <math>(xD - \lambda_1 I)(xD - \lambda_2 I) = (xD - \lambda_2 I)(xD - \lambda_1 I)</math>. Hence, if <math> \lambda_1 \neq \lambda_2 </math>, the solution to <math> Ly = 0 </math> is a linear combination of the solutions to each of <math> (xD - \lambda_1 I)y = 0 </math> and <math> (xD - \lambda_2 I)y = 0 </math>, which can be solved by [[separation of variables]]. Indeed, with <math> i \in \{1,2\} </math>, we have <math> (xD - \lambda_i I)y = x\frac{dy}{dx} - \lambda_i y = 0 </math>. So, <math display="block">\begin{align} x\frac{dy}{dx} &= \lambda_i y\\ \int \frac{1}{y}\, dy &= \lambda_i \int \frac{1}{x}\, dx\\ \ln y &= \lambda_i \ln x + C\\ y &= c_i e^{\lambda_i \ln x} = c_i x^{\lambda_i}.\end{align}</math> Thus, the general solution is <math> y = c_1 x^{\lambda_1} + c_2 x^{\lambda_2} </math>. If <math> \lambda = \lambda_1 = \lambda_2 </math>, then we instead need to consider the solution of <math>(xD - \lambda I)^2y = 0 </math>. Let <math> z = (xD-\lambda I)y </math>, so that we can write <math display="block"> (xD - \lambda I)^2y = (xD - \lambda I)z = 0.</math> As before, the solution of <math> (xD- \lambda I)z = 0 </math> is of the form <math> z = c_1x^\lambda </math>. So, we are left to solve <math display="block"> (xD - \lambda I)y = x\frac{dy}{dx} - \lambda y = c_1x^\lambda.</math> We then rewrite the equation as <math display="block"> \frac{dy}{dx} - \frac{\lambda}{x} y = c_1x^{\lambda-1},</math> which one can recognize as being amenable to solution via an [[integrating factor]]. Choose <math> M(x) = x^{-\lambda} </math> as our integrating factor. Multiplying our equation through by <math> M(x) </math> and recognizing the left-hand side as the derivative of a product, we then obtain <math display="block">\begin{align} \frac{d}{dx}(x^{-\lambda} y) &= c_1x^{-1}\\ x^{-\lambda} y &= \int c_1x^{-1}\, dx\\ y &= x^\lambda (c_1\ln(x) + c_2)\\ &= c_1\ln(x)x^\lambda +c_2 x^\lambda.\end{align}</math> ===Example=== Given <math display="block">x^2 u'' - 3xu' + 3u = 0\,,</math> we substitute the simple solution {{math|''x''{{i sup|''m''}}}}: <math display="block">x^2\left(m\left(m-1\right)x^{m-2}\right)-3x\left(m x^{m-1}\right) + 3x^m = m\left(m-1\right)x^m - 3m x^m+3x^m = \left(m^2 - 4m + 3\right)x^m = 0\,.</math> For {{math|''x''{{i sup|''m''}}}} to be a solution, either {{math|1=''x'' = 0}}, which gives the [[Trivial (mathematics)|trivial]] solution, or the coefficient of {{math|''x''{{i sup|''m''}}}} is zero. Solving the quadratic equation, we get {{math|1=''m'' = 1, 3}}. The general solution is therefore : <math>u=c_1 x+c_2 x^3\,.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)