Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cauchy principal value
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formulation== Depending on the type of [[Mathematical singularity|singularity]] in the integrand {{mvar|f}}, the Cauchy principal value is defined according to the following rules: {{term|id=For a singularity at a finite number b|For a singularity at a finite number {{mvar|b}}}}{{defn| <math display="block">\lim_{ \; \varepsilon \to 0^+ \;} \, \, \left[ \, \int_a^{b-\varepsilon} f(x) \, \mathrm{d}x ~ + ~ \int_{b+\varepsilon}^c f(x) \, \mathrm{d}x \, \right]</math> with <math> a < b < c </math> and where {{mvar|b}} is the difficult point, at which the behavior of the function {{mvar|f}} is such that <math display="block">\int_a^b f(x)\,\mathrm{d}x = \pm\infty \quad</math> for any <math> a < b </math> and <math display="block">\int_b^c f(x)\,\mathrm{d}x = \mp\infty \quad</math> for any <math> c > b </math>. (See [[Plus–minus sign#Minus plus sign|''plus or minus'']] for the precise use of notations ± and ∓.) }} {{term|For a singularity at infinity (<math>\infty</math>)}}{{defn| <math display="block">\lim_{a\to\infty} \, \int_{-a}^a f(x)\,\mathrm{d}x </math> where <math display="block"> \int_{-\infty}^0 f(x) \,\mathrm{d}x = \pm\infty </math> and <math display="block"> \int_0^\infty f(x) \,\mathrm{d}x = \mp\infty .</math> }} In some cases it is necessary to deal simultaneously with singularities both at a finite number {{mvar|b}} and at infinity. This is usually done by a limit of the form <math display="block">\lim_{\;\eta \to 0^+}\, \lim_{\;\varepsilon \to 0^+} \,\left[\,\int_{b - \frac{1}{\eta}}^{b - \varepsilon} f(x)\,\mathrm{d}x \,~ + ~ \int_{b+\varepsilon}^{b + \frac{1}{\eta}} f(x)\,\mathrm{d}x \,\right].</math> In those cases where the integral may be split into two independent, finite limits, <math display="block">\lim_{\; \varepsilon\to 0^+\;} \, \left|\,\int_a^{b-\varepsilon} f(x)\,\mathrm{d}x \,\right|\; < \;\infty </math> and <math display="block"> \lim_{\;\eta\to 0^+}\;\left|\,\int_{b+\eta}^c f(x)\,\mathrm{d}x \,\right| \; < \; \infty ,</math> then the function is integrable in the ordinary sense. The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of [[Methods of contour integration|contour integrals]] of a complex-valued function <math> f(z) : z = x + i\, y \;,</math> with <math> x , y \in \mathbb{R} \;,</math> with a pole on a contour {{mvar|C}}. Define <math>C(\varepsilon)</math> to be that same contour, where the portion inside the disk of radius {{mvar|ε}} around the pole has been removed. Provided the function <math>f(z)</math> is integrable over <math>C(\varepsilon)</math> no matter how small {{mvar|ε}} becomes, then the Cauchy principal value is the limit:<ref name=Kanwal>{{cite book |first=Ram P. |last=Kanwal |year=1996 |title=Linear Integral Equations: Theory and technique |edition=2nd |page=191 |publisher=Birkhäuser |place=Boston, MA |isbn=0-8176-3940-3 |url=https://books.google.com/books?id=-bV9Qn8NpCYC&q=+%22Poincar%C3%A9-Bertrand+transformation%22&pg=PA194 |via=Google Books}}</ref> <math display="block">\operatorname{p.\!v.} \int_{C} f(z) \,\mathrm{d}z = \lim_{\varepsilon \to 0^+} \int_{C( \varepsilon)} f(z)\, \mathrm{d}z .</math> In the case of [[Lebesgue integral|Lebesgue-integrable]] functions, that is, functions which are integrable in [[absolute value]], these definitions coincide with the standard definition of the integral. If the function <math>f(z)</math> is ''[[meromorphic]]'', the [[Sokhotski–Plemelj theorem]] relates the principal value of the integral over {{mvar|C}} with the mean-value of the integrals with the contour displaced slightly above and below, so that the [[residue theorem]] can be applied to those integrals. Principal value integrals play a central role in the discussion of [[Hilbert transform]]s.<ref name=King>{{cite book |first=Frederick W. |last=King |year=2009 |title=Hilbert Transforms |publisher=Cambridge University Press |place=Cambridge, UK |isbn=978-0-521-88762-5}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)