Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Centered square number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Relationships with other figurate numbers == Let ''C''<sub>''k'',''n''</sub> generally represent the ''n''th [[Centered polygonal number|centered ''k''-gonal number]]. The ''n''th centered square number is given by the formula: :<math>C_{4,n} = n^2 + (n - 1)^2.</math> That is, the ''n''th centered square number is the sum of the ''n''th and the (''n'' β 1)th [[square number]]s. The following pattern demonstrates this formula: :{| |- align="center" valign="middle" style="line-height: 0;" |[[Image:GrayDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] |- align="center" valign="top" | <math>C_{4,1} = 0 + 1</math> | | | <math>C_{4,2} = 1 + 4</math> | | | <math>C_{4,3} = 4 + 9</math> | | | <math>C_{4,4} = 9 + 16</math> |} The formula can also be expressed as: :<math>C_{4,n} = \frac{(2n-1)^2 + 1}{2}.</math> That is, the ''n''th centered square number is half of the ''n''th odd square number plus 1, as illustrated below: :{| |- align="center" valign="bottom" style="line-height: 0;" |[[Image:GrayDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]] | | |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]] |- align="center" valign="top" | <math>C_{4,1} = \frac{1 + 1}{2}</math> | | | <math>C_{4,2} = \frac{9 + 1}{2}</math> | | | <math>C_{4,3} = \frac{25 + 1}{2}</math> | | | <math>C_{4,4} = \frac{49 + 1}{2}</math> |} Like all [[centered polygonal number]]s, centered square numbers can also be expressed in terms of [[triangular number]]s: :<math>C_{4,n} = 1 + 4\ T_{n-1} = 1 + 2{n(n-1)},</math> where :<math>T_n = \frac{n(n+1)}{2} = \binom{n+1}{2}</math> is the ''n''th triangular number. This can be easily seen by removing the center dot and dividing the rest of the figure into four triangles, as below: :{| |- align="center" valign="middle" style="line-height: 0;" |[[Image:BlackDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] | | |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]] |- align="center" valign="top" | <math>C_{4,1} = 1</math> | | | <math>C_{4,2} = 1 + 4 \times 1</math> | | | <math>C_{4,3} = 1 + 4 \times 3</math> | | | <math>C_{4,4} = 1 + 4 \times 6</math> |} The difference between two consecutive [[octahedral number]]s is a centered square number (Conway and Guy, p.50). Another way the centered square numbers can be expressed is: :<math>C_{4,n} = 1 + 4 \dim (SO(n)),</math> where :<math>\dim (SO(n)) = \frac{n(n-1)}{2}.</math> Yet another way the centered square numbers can be expressed is in terms of the [[centered triangular number]]s: :<math>C_{4,n} = \frac{4C_{3,n}-1}{3},</math> where :<math>C_{3,n} = 1 + 3\frac{n(n-1)}{2}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)