Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Central angle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formulas== If the intersection points {{mvar|A}} and {{mvar|B}} of the legs of the angle with the circle form a [[diameter]], then {{math|1=Ξ = 180Β°}} is a [[straight angle]]. (In radians, {{math|1=Ξ = Ο}}.) Let {{math|''L''}} be the '''minor arc''' of the circle between points {{mvar|A}} and {{mvar|B}}, and let {{mvar|R}} be the [[radius]] of the circle.<ref>{{cite web|url=http://www.mathopenref.com/circlecentral.html|title=Central angle (of a circle)| publisher =Math Open Reference|year=2009|accessdate=December 30, 2013}} interactive</ref> [[Image:Angle central convex.svg|frame|right|Central angle. Convex. Is subtended by minor arc {{math|''L''}}]] If the central angle {{math|Ξ}} is subtended by {{math|''L''}}, then <math display="block"> 0^{\circ} < \Theta < 180^{\circ} \, , \,\, \Theta = \left( {\frac{180L}{\pi R}} \right) ^{\circ}=\frac{L}{R}.</math> {{math proof|title=Proof (for degrees)|proof= The [[circumference]] of a circle with radius {{mvar|R}} is {{math|2Ο''R''}}, and the minor arc {{math|''L''}} is the ({{sfrac|Ξ|360Β°}}) proportional part of the whole circumference (see [[Arc (geometry)|arc]]). So: <math display="block">L=\frac{\Theta}{360^{\circ}} \cdot 2 \pi R \, \Rightarrow \, \Theta = \left( {\frac{180L}{\pi R}} \right) ^{\circ}.</math>}} [[Image:Angle central reflex.svg|frame|right|Central angle. Reflex. Is ''not'' subtended by {{math|''L''}}]] {{math proof|title=Proof (for radians)|proof= The [[circumference]] of a circle with radius {{mvar|R}} is {{math|2Ο''R''}}, and the minor arc {{math|''L''}} is the ({{sfrac|Ξ|2Ο}}) proportional part of the whole circumference (see [[Arc (geometry)|arc]]). So <math display="block">L=\frac{\Theta}{2 \pi} \cdot 2 \pi R \, \Rightarrow \, \Theta = \frac{L}{R}.</math>}} If the central angle {{math|Ξ}} is '''not''' subtended by the minor arc {{math|''L''}}, then {{math|Ξ}} is a reflex angle and <math display="block"> 180^{\circ} < \Theta < 360^{\circ} \, , \,\, \Theta = \left( 360 - \frac{180L}{\pi R} \right) ^{\circ}=2\pi-\frac{L}{R}.</math> If a tangent at {{math|''A''}} and a tangent at {{math|''B''}} intersect at the exterior point {{math|''P''}}, then denoting the center as {{math|''O''}}, the angles {{math|β ''BOA''}} (convex) and {{math|β ''BPA''}} are [[Supplementary angles|supplementary]] (sum to 180Β°).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)