Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Central limit theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Independent sequences== [[File:IllustrationCentralTheorem.png|thumb|upright=1.4 |right|Whatever the form of the population distribution, the sampling distribution tends to a Gaussian, and its dispersion is given by the central limit theorem.<ref>{{cite book |last=Rouaud |first=Mathieu |title=Probability, Statistics and Estimation|year=2013 |page=10 |url=http://www.incertitudes.fr/book.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.incertitudes.fr/book.pdf |archive-date=2022-10-09 |url-status=live}}</ref>]] ===Classical CLT=== Let <math>\{X_1, \ldots, X_n}\</math> be a sequence of [[Independent and identically distributed random variables|i.i.d. random variables]] having a distribution with [[expected value]] given by <math>\mu</math> and finite [[variance]] given by <math>\sigma^2.</math> Suppose we are interested in the [[sample mean|sample average]] <math display="block">\bar{X}_n \equiv \frac{X_1 + \cdots + X_n}{n}.</math> By the [[law of large numbers]], the sample average [[Almost sure convergence|converges almost surely]] (and therefore also [[Convergence in probability|converges in probability]]) to the expected value <math>\mu</math> as <math>n\to\infty.</math> The classical central limit theorem describes the size and the distributional form of the {{linktext|stochastic}} fluctuations around the deterministic number <math>\mu</math> during this convergence. More precisely, it states that as <math>n</math> gets larger, the distribution of the normalized mean <math>\sqrt{n}(\bar{X}_n - \mu)</math>, i.e. the difference between the sample average <math>\bar{X}_n</math> and its limit <math>\mu,</math> scaled by the factor <math>\sqrt{n}</math>, approaches the [[normal distribution]] with mean <math>0</math> and variance <math>\sigma^2.</math> For large enough <math>n,</math> the distribution of <math>\bar{X}_n</math> gets arbitrarily close to the normal distribution with mean <math>\mu</math> and variance <math>\sigma^2/n.</math> The usefulness of the theorem is that the distribution of <math>\sqrt{n}(\bar{X}_n - \mu)</math> approaches normality regardless of the shape of the distribution of the individual <math>X_i.</math> Formally, the theorem can be stated as follows: {{math theorem | name = Lindeberg–Lévy CLT | math_statement = Suppose <math> X_1, X_2, X_3 \ldots</math> is a sequence of [[independent and identically distributed|i.i.d.]] random variables with <math>\operatorname E[X_i] = \mu</math> and <math>\operatorname{Var}[X_i] = \sigma^2 < \infty.</math> Then, as <math>n</math> approaches infinity, the random variables <math>\sqrt{n}(\bar{X}_n - \mu)</math> [[convergence in distribution|converge in distribution]] to a [[normal distribution|normal]] <math>\mathcal{N}(0, \sigma^2)</math>:{{sfnp|Billingsley|1995|p=357}} <math display="block">\sqrt{n}\left(\bar{X}_n - \mu\right) \mathrel{\overset{d}{\longrightarrow}} \mathcal{N}\left(0,\sigma^2\right) .</math>}} In the case <math>\sigma > 0,</math> convergence in distribution means that the [[cumulative distribution function]]s of <math>\sqrt{n}(\bar{X}_n - \mu)</math> converge pointwise to the cdf of the <math>\mathcal{N}(0, \sigma^2)</math> distribution: for every real number <math>z,</math> <math display="block">\lim_{n\to\infty} \mathbb{P}\left[\sqrt{n}(\bar{X}_n-\mu) \le z\right] = \lim_{n\to\infty} \mathbb{P}\left[\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma } \le \frac{z}{\sigma}\right]= \Phi\left(\frac{z}{\sigma}\right) ,</math> where <math>\Phi(z)</math> is the standard normal cdf evaluated at <math>z.</math> The convergence is uniform in <math>z</math> in the sense that <math display="block">\lim_{n\to\infty}\;\sup_{z\in\R}\;\left|\mathbb{P}\left[\sqrt{n}(\bar{X}_n-\mu) \le z\right] - \Phi\left(\frac{z}{\sigma}\right)\right| = 0~,</math> where <math>\sup</math> denotes the least upper bound (or [[supremum]]) of the set.{{sfnp|Bauer|2001|loc=Theorem 30.13|p=199}} ===Lyapunov CLT=== In this variant of the central limit theorem the random variables <math display="inline">X_i</math> have to be independent, but not necessarily identically distributed. The theorem also requires that random variables <math display="inline">\left| X_i\right|</math> have [[moment (mathematics)|moment]]s of some order {{nowrap|<math display="inline">(2+\delta)</math>,}} and that the rate of growth of these moments is limited by the Lyapunov condition given below. {{math theorem | name = Lyapunov CLT{{sfnp|Billingsley|1995|p=362}} | math_statement = Suppose <math display="inline">\{X_1, \ldots, X_n, \ldots\}</math> is a sequence of independent random variables, each with finite expected value <math display="inline">\mu_i</math> and variance {{nowrap|<math display="inline">\sigma_i^2</math>.}} Define <math display="block">s_n^2 = \sum_{i=1}^n \sigma_i^2 .</math> If for some {{nowrap|<math display="inline">\delta > 0</math>,}} ''Lyapunov’s condition'' <math display="block">\lim_{n\to\infty} \; \frac{1}{s_{n}^{2+\delta}} \, \sum_{i=1}^{n} \operatorname E\left[\left|X_{i} - \mu_{i}\right|^{2+\delta}\right] = 0</math> is satisfied, then a sum of <math display="inline">\frac{X_i - \mu_i}{s_n}</math> converges in distribution to a standard normal random variable, as <math display="inline">n</math> goes to infinity: <math display="block">\frac{1}{s_n}\,\sum_{i=1}^{n} \left(X_i - \mu_i\right) \mathrel{\overset{d}{\longrightarrow}} \mathcal{N}(0,1) .</math>}} In practice it is usually easiest to check Lyapunov's condition for {{nowrap|<math display="inline">\delta = 1</math>.}} If a sequence of random variables satisfies Lyapunov's condition, then it also satisfies Lindeberg's condition. The converse implication, however, does not hold. ===Lindeberg (-Feller) CLT=== {{Main|Lindeberg's condition}} In the same setting and with the same notation as above, the Lyapunov condition can be replaced with the following weaker one (from [[Jarl Waldemar Lindeberg|Lindeberg]] in 1920). Suppose that for every <math display="inline">\varepsilon > 0</math>, <math display="block"> \lim_{n \to \infty} \frac{1}{s_n^2}\sum_{i = 1}^{n} \operatorname E\left[(X_i - \mu_i)^2 \cdot \mathbf{1}_{\left\{\left| X_i - \mu_i \right| > \varepsilon s_n \right\}} \right] = 0</math> where <math display="inline">\mathbf{1}_{\{\ldots\}}</math> is the [[indicator function]]. Then the distribution of the standardized sums <math display="block">\frac{1}{s_n}\sum_{i = 1}^n \left( X_i - \mu_i \right)</math> converges towards the standard normal distribution {{nowrap|<math display="inline">\mathcal{N}(0, 1)</math>.}} ===CLT for the sum of a random number of random variables=== Rather than summing an integer number <math>n</math> of random variables and taking <math>n \to \infty</math>, the sum can be of a random number <math>N</math> of random variables, with conditions on <math>N</math>. {{math theorem | name = Robbins CLT<ref>{{cite journal |last1=Robbins |first1=Herbert |title=The asymptotic distribution of the sum of a random number of random variables |journal=Bull. Amer. Math. Soc. |date=1948 |volume=54 |issue=12 |pages=1151–1161 |doi=10.1090/S0002-9904-1948-09142-X |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-54/issue-12/The-asymptotic-distribution-of-the-sum-of-a-random-number/bams/1183513324.full|doi-access=free }}</ref><ref>{{cite book |last1=Chen |first1=Louis H.Y. |last2=Goldstein |first2=Larry |last3=Shao |first3=Qi-Man |title=Normal Approximation by Stein's Method |date=2011 |publisher=Springer-Verlag |location=Berlin Heidelberg |pages=270–271}}</ref> | math_statement = Let <math>\{X_i, i \geq 1\}</math> be independent, identically distributed random variables with <math>E(X_i) = \mu</math> and <math>\text{Var}(X_i) = \sigma^2</math>, and let <math>\{N_n, n \geq 1\}</math> be a sequence of non-negative integer-valued random variables that are independent of <math>\{X_i, i \geq 1\}</math>. Assume for each <math>n = 1, 2, \dots</math> that <math>E(N_n^2) < \infty</math> and <math display="block"> \frac{N_n - E(N_n)}{\sqrt{\text{Var}(N_n)}} \xrightarrow{\quad d \quad} \mathcal{N}(0,1) </math> where <math>\xrightarrow{\,d\,}</math> denotes convergence in distribution and <math>\mathcal{N}(0,1)</math> is the normal distribution with mean 0, variance 1. Then <math display="block"> \frac{\sum_{i=1}^{N_n} X_i - \mu E(N_n)}{\sqrt{\sigma^2E(N_n) + \mu^2\text{Var}(N_n)}} \xrightarrow{\quad d \quad} \mathcal{N}(0,1) </math> }} ===Multidimensional CLT=== Proofs that use characteristic functions can be extended to cases where each individual <math display="inline">\mathbf{X}_i</math> is a [[random vector]] in {{nowrap|<math display="inline">\R^k</math>,}} with mean vector <math display="inline">\boldsymbol\mu = \operatorname E[\mathbf{X}_i]</math> and [[covariance matrix]] <math display="inline">\mathbf{\Sigma}</math> (among the components of the vector), and these random vectors are independent and identically distributed. The multidimensional central limit theorem states that when scaled, sums converge to a [[multivariate normal distribution]].<ref name="vanderVaart">{{Cite book |last=van der Vaart |first=A.W. |title=Asymptotic statistics |year=1998 |publisher=Cambridge University Press |location=New York, NY |isbn=978-0-521-49603-2 |lccn=98015176}}</ref> Summation of these vectors is done component-wise. For <math>i = 1, 2, 3, \ldots,</math> let <math display="block">\mathbf{X}_i = \begin{bmatrix} X_{i}^{(1)} \\ \vdots \\ X_{i}^{(k)} \end{bmatrix}</math> be independent random vectors. The sum of the random vectors <math>\mathbf{X}_1, \ldots, \mathbf{X}_n</math> is <math display="block">\sum_{i=1}^{n} \mathbf{X}_i = \begin{bmatrix} X_{1}^{(1)} \\ \vdots \\ X_{1}^{(k)} \end{bmatrix} + \begin{bmatrix} X_{2}^{(1)} \\ \vdots \\ X_{2}^{(k)} \end{bmatrix} + \cdots + \begin{bmatrix} X_{n}^{(1)} \\ \vdots \\ X_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} X_{i}^{(1)} \\ \vdots \\ \sum_{i=1}^{n} X_{i}^{(k)} \end{bmatrix}</math> and their average is <math display="block">\mathbf{\bar X_n} = \begin{bmatrix} \bar X_{i}^{(1)} \\ \vdots \\ \bar X_{i}^{(k)} \end{bmatrix} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i.</math> Therefore, <math display="block">\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left[ \mathbf{X}_i - \operatorname E \left( \mathbf{X}_i \right) \right] = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} ( \mathbf{X}_i - \boldsymbol\mu ) = \sqrt{n}\left(\overline{\mathbf{X}}_n - \boldsymbol\mu\right). </math> The multivariate central limit theorem states that <math display="block">\sqrt{n}\left( \overline{\mathbf{X}}_n - \boldsymbol\mu \right) \mathrel{\overset{d}{\longrightarrow}} \mathcal{N}_k(0,\boldsymbol\Sigma),</math> where the [[covariance matrix]] <math>\boldsymbol{\Sigma}</math> is equal to <math display="block"> \boldsymbol\Sigma = \begin{bmatrix} {\operatorname{Var} \left (X_{1}^{(1)} \right)} & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(2)} \right) & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(k)} \right) \\ \operatorname{Cov} \left (X_{1}^{(2)},X_{1}^{(1)} \right) & \operatorname{Var} \left( X_{1}^{(2)} \right) & \operatorname{Cov} \left(X_{1}^{(2)},X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left(X_{1}^{(2)},X_{1}^{(k)} \right) \\ \operatorname{Cov}\left (X_{1}^{(3)},X_{1}^{(1)} \right) & \operatorname{Cov} \left (X_{1}^{(3)},X_{1}^{(2)} \right) & \operatorname{Var} \left (X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left (X_{1}^{(3)},X_{1}^{(k)} \right) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(1)} \right) & \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(2)} \right) & \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(3)} \right) & \cdots & \operatorname{Var} \left (X_{1}^{(k)} \right) \\ \end{bmatrix}~.</math> The multivariate central limit theorem can be proved using the [[Cramér–Wold theorem]].<ref name="vanderVaart"/> The rate of convergence is given by the following [[Berry–Esseen theorem|Berry–Esseen]] type result: {{math theorem | name = Theorem<ref>{{cite web |first=Ryan |last=O’Donnell | author-link = Ryan O'Donnell (computer scientist) |year=2014 |title=Theorem 5.38 |url=http://www.contrib.andrew.cmu.edu/~ryanod/?p=866 |access-date=2017-10-18 |archive-date=2019-04-08 |archive-url=https://web.archive.org/web/20190408054104/http://www.contrib.andrew.cmu.edu/~ryanod/?p=866 |url-status=dead }}</ref> | math_statement = Let <math>X_1, \dots, X_n, \dots</math> be independent <math>\R^d</math>-valued random vectors, each having mean zero. Write <math>S =\sum^n_{i=1}X_i</math> and assume <math>\Sigma = \operatorname{Cov}[S]</math> is invertible. Let <math>Z \sim \mathcal{N}(0,\Sigma)</math> be a <math>d</math>-dimensional Gaussian with the same mean and same covariance matrix as <math>S</math>. Then for all convex sets {{nowrap|<math>U \subseteq \R^d</math>,}} <math display="block">\left|\mathbb{P}[S \in U] - \mathbb{P}[Z \in U]\right| \le C \, d^{1/4} \gamma~,</math> where <math>C</math> is a universal constant, {{nowrap|<math>\gamma = \sum^n_{i=1} \operatorname E \left[\left\| \Sigma^{-1/2}X_i\right\|^3_2\right]</math>,}} and <math>\|\cdot\|_2</math> denotes the Euclidean norm on {{nowrap|<math>\R^d</math>.}} }} It is unknown whether the factor <math display="inline">d^{1/4}</math> is necessary.<ref>{{cite journal |first=V. |last=Bentkus |title=A Lyapunov-type bound in <math>\R^d</math> |journal=Theory Probab. Appl. |volume=49 |year=2005 |issue=2 |pages=311–323 |doi=10.1137/S0040585X97981123 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)