Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Character (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Multiplicative character == {{main|multiplicative character}} A '''multiplicative character''' (or '''linear character''', or simply '''character''') on a group ''G'' is a [[group homomorphism]] from ''G'' to the [[unit group|multiplicative group]] of a field {{Harv|Artin|1966}}, usually the field of [[complex number]]s. If ''G'' is any group, then the set Ch(''G'') of these morphisms forms an [[abelian group]] under pointwise multiplication. This group is referred to as the [[character group]] of ''G''. Sometimes only ''unitary'' characters are considered (thus the image is in the [[unit circle]]); other such homomorphisms are then called ''quasi-characters''. [[Dirichlet character]]s can be seen as a special case of this definition. Multiplicative characters are [[linear independence|linearly independent]], i.e. if <math>\chi_1,\chi_2, \ldots , \chi_n </math> are different characters on a group ''G'' then from <math>a_1\chi_1+a_2\chi_2 + \dots + a_n \chi_n = 0 </math> it follows that <math>a_1=a_2=\cdots=a_n=0 </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)