Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions== === Recurrence definition === The ''Chebyshev polynomials of the first kind'' can be defined by the recurrence relation <math display="block">\begin{align} T_0(x) & = 1, \\ T_1(x) & = x, \\ T_{n+1}(x) & = 2 x\,T_n(x) - T_{n-1}(x). \end{align}</math> The ''Chebyshev polynomials of the second kind'' can be defined by the recurrence relation <math display="block">\begin{align} U_0(x) & = 1, \\ U_1(x) & = 2 x, \\ U_{n+1}(x) & = 2 x\,U_n(x) - U_{n-1}(x), \end{align}</math> which differs from the above only by the rule for ''n=1''. ===Trigonometric definition=== The Chebyshev polynomials of the first and second kind can be defined as the unique polynomials satisfying <math display="block">T_n(\cos\theta) = \cos(n\theta)</math> and <math display="block">U_n(\cos\theta) = \frac{\sin\big((n + 1)\theta\big)}{\sin\theta},</math> for {{math|1=''n'' = 0, 1, 2, 3, β¦}}. An equivalent way to state this is via exponentiation of a [[complex number]]: given a complex number {{math|1=''z'' = ''a'' + ''bi''}} with absolute value of one, <math display="block">z^n = T_n(a) + ib U_{n-1}(a).</math> Chebyshev polynomials can be defined in this form when studying [[trigonometric polynomials]].<ref>{{Cite journal |last=Schaeffer |first=A. C. |date=1941 |title=Inequalities of A. Markoff and S. Bernstein for polynomials and related functions |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-47/issue-8/Inequalities-of-A-Markoff-and-S-Bernstein-for-polynomials-and/bams/1183503783.full |journal=Bulletin of the American Mathematical Society |volume=47 |issue=8 |pages=565β579 |doi=10.1090/S0002-9904-1941-07510-5 |issn=0002-9904|doi-access=free }}</ref> That {{math|cos{{nnbsp}}''nx''}} is an {{mvar|n}}th-[[degree of a polynomial|degree]] polynomial in {{math|cos{{nnbsp}}''x''}} can be seen by observing that {{math|cos{{nnbsp}}''nx''}} is the [[complex number|real part]] of one side of [[de Moivre's formula]]: <math display="block">\cos n \theta + i \sin n \theta = (\cos \theta + i \sin \theta)^n.</math> The real part of the other side is a polynomial in {{math|cos{{nnbsp}}''x''}} and {{math|sin{{nnbsp}}''x''}}, in which all powers of {{math|sin{{nnbsp}}''x''}} are [[parity (mathematics)|even]] and thus replaceable through the identity {{math|1=cos<sup>2</sup>{{nnbsp}}''x'' + sin<sup>2</sup>{{nnbsp}}''x'' = 1}}. By the same reasoning, {{math|sin{{nnbsp}}''nx''}} is the [[complex number|imaginary part]] of the polynomial, in which all powers of {{math|sin{{nnbsp}}''x''}} are [[parity (mathematics)|odd]] and thus, if one factor of {{math|sin{{nnbsp}}''x''}} is factored out, the remaining factors can be replaced to create a {{math|(''n'' β 1)}}st-degree polynomial in {{math|cos{{nnbsp}}''x''}}. For ''x'' outside the interval [-1,1], the above definition implies <math display="block">T_n(x) = \begin{cases} \cos(n \arccos x) & \text{ if }~ |x| \le 1, \\ \cosh(n \operatorname{arcosh} x) & \text{ if }~ x \ge 1, \\ (-1)^n \cosh(n \operatorname{arcosh}(-x) ) & \text{ if }~ x \le -1. \end{cases}</math> ===Commuting polynomials definition=== Chebyshev polynomials can also be characterized by the following theorem:<ref>{{cite journal|first=J. F. |last=Ritt |author-link=Joseph Ritt |doi=10.1090/S0002-9947-1922-1501189-9 |title=Prime and Composite Polynomials |journal=Trans. Amer. Math. Soc. |year=1922|volume=23 |pages=51β66 | url=https://www.ams.org/journals/tran/1922-023-01/S0002-9947-1922-1501189-9 |doi-access=free}}</ref> If <math> F_n(x)</math> is a family of monic polynomials with coefficients in a field of characteristic <math>0</math> such that <math> \deg F_n(x) = n</math> and <math> F_m(F_n(x)) = F_n(F_m(x))</math> for all <math>m</math> and <math> n</math>, then, up to a simple change of variables, either <math> F_n(x) = x^n</math> for all <math> n</math> or <math>F_n(x) = 2\cdot T_n(x/2)</math> for all <math> n</math>. ===Pell equation definition=== The Chebyshev polynomials can also be defined as the solutions to the [[Pell equation]]: <math display="block">T_n(x)^2 - \left(x^2 - 1\right) U_{n-1}(x)^2 = 1</math> in a [[ring (mathematics)|ring]] {{math|''R''[''x'']}}.<ref>{{cite thesis |first=Jeroen |last=Demeyer |url=http://cage.ugent.be/~jdemeyer/phd.pdf |title=Diophantine Sets over Polynomial Rings and Hilbert's Tenth Problem for Function Fields |archive-url=https://web.archive.org/web/20070702185523/https://cage.ugent.be/~jdemeyer/phd.pdf |archive-date=2007-07-02 |degree=Ph.D. |year=2007 |page=70}}</ref> Thus, they can be generated by the standard technique for Pell equations of taking powers of a fundamental solution: <math display="block">T_n(x) + U_{n-1}(x)\,\sqrt{x^2-1} = \left(x + \sqrt{x^2-1}\right)^n~. </math> ===Generating functions=== The [[generating function|ordinary generating function]] for {{mvar|T<sub>n</sub>}} is <math display="block">\sum_{n=0}^\infty T_n(x)\,t^n = \frac{1 - tx}{1 - 2tx + t^2}.</math> There are several other [[generating function]]s for the Chebyshev polynomials; the [[exponential generating function]] is <math display="block">\begin{align} \sum_{n=0}^\infty T_n(x) \frac{t^n}{n!} &= {\tfrac{1}{2}} \Bigl({\exp}\Bigl({\textstyle t\bigl(x - \sqrt{x^2 - 1}~\!\bigr)}\Bigr) + {\exp}\Bigl({\textstyle t\bigl(x + \sqrt{x^2 - 1}~\!\bigr)}\Bigr)\Bigr) \\ &= e^{tx} \cosh\left({\textstyle t\sqrt{x^2 - 1} }~\! \right). \end{align}</math> The generating function relevant for 2-dimensional [[potential theory]] and [[Cylindrical multipole moments|multipole expansion]] is <math display="block">\sum\limits_{n=1}^\infty T_{n}(x)\,\frac{t^n}{n} = \ln\left(\frac{1}{\sqrt{1 - 2tx + t^2 }}\right).</math> The ordinary generating function for {{mvar|U<sub>n</sub>}} is <math display="block">\sum_{n=0}^\infty U_n(x)\,t^n = \frac{1}{1 - 2tx + t^2},</math> and the exponential generating function is <math display="block"> \sum_{n=0}^\infty U_n(x) \frac{t^n}{n!} = e^{tx} \biggl(\!\cosh\left(t\sqrt{x^2 - 1}\right) + \frac{x}{\sqrt{x^2 - 1}} \sinh\left(t\sqrt{x^2 - 1}\right)\biggr). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)