Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cholesky decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Statement == The Cholesky decomposition of a [[Hermitian matrix|Hermitian]] [[positive-definite matrix]] {{math|'''A'''}}, is a decomposition of the form <math display=block>\mathbf{A} = \mathbf{L L}^{*},</math> where {{math|'''L'''}} is a [[lower triangular matrix]] with real and positive diagonal entries, and {{math|'''L'''}}* denotes the [[conjugate transpose]] of {{math|'''L'''}}. Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition.<ref>{{harvtxt|Golub|Van Loan|1996|p=143}}, {{harvtxt|Horn|Johnson|1985|p=407}}, {{harvtxt|Trefethen|Bau|1997|p=174}}.</ref> The converse holds trivially: if {{math|'''A'''}} can be written as {{math|'''LL'''*}} for some invertible {{math|'''L'''}}, lower triangular or otherwise, then {{math|'''A'''}} is Hermitian and positive definite. When {{math|'''A'''}} is a real matrix (hence symmetric positive-definite), the factorization may be written <math display=block>\mathbf{A} = \mathbf{L L}^\mathsf{T},</math> where {{math|'''L'''}} is a real lower triangular matrix with positive diagonal entries.<ref>{{harvtxt|Horn|Johnson|1985|p=407}}.</ref><ref>{{Cite web|url=https://mathoverflow.net/questions/125960/diagonalizing-a-complex-symmetric-matrix|title=matrices - Diagonalizing a Complex Symmetric Matrix|website=MathOverflow|access-date=2020-01-25}}</ref><ref>{{Cite journal|last1=Schabauer|first1=Hannes|last2=Pacher|first2=Christoph|last3=Sunderland|first3=Andrew G.|last4=Gansterer|first4=Wilfried N.|date=2010-05-01|title=Toward a parallel solver for generalized complex symmetric eigenvalue problems|journal=Procedia Computer Science|series=ICCS 2010|language=en|volume=1|issue=1|pages=437β445|doi=10.1016/j.procs.2010.04.047|issn=1877-0509|doi-access=free}}</ref> === Positive semidefinite matrices === If a Hermitian matrix {{math|'''A'''}} is only positive semidefinite, instead of positive definite, then it still has a decomposition of the form {{math|1='''A''' = '''LL'''*}} where the diagonal entries of {{math|'''L'''}} are allowed to be zero.<ref>{{harvtxt|Golub|Van Loan|1996|p=147}}.</ref> The decomposition need not be unique, for example: <math display=block>\begin{bmatrix}0 & 0 \\0 & 1\end{bmatrix} = \mathbf L \mathbf L^*, \quad \quad \mathbf L=\begin{bmatrix}0 & 0\\ \cos \theta & \sin\theta\end{bmatrix},</math> for any {{mvar|ΞΈ}}. However, if the rank of {{math|'''A'''}} is {{mvar|r}}, then there is a unique lower triangular {{math|'''L'''}} with exactly {{mvar|r}} positive diagonal elements and {{math|''n'' β ''r''}} columns containing all zeroes.<ref> {{Cite book |last=Gentle |first=James E. |date=1998 |title=Numerical Linear Algebra for Applications in Statistics |isbn=978-1-4612-0623-1 |publisher=Springer |language=en |page= 94}}</ref> Alternatively, the decomposition can be made unique when a pivoting choice is fixed. Formally, if {{math|'''A'''}} is an {{math|''n'' Γ ''n''}} positive semidefinite matrix of rank {{mvar|r}}, then there is at least one permutation matrix {{math|'''P'''}} such that {{math|'''P A P'''<sup>T</sup>}} has a unique decomposition of the form {{math|1='''P A P'''<sup>T</sup> = '''L L'''<sup>*</sup>}} with <math display=inline> \mathbf L = \begin{bmatrix} \mathbf L_1 & 0 \\ \mathbf L_2 & 0\end{bmatrix} </math>, where {{math|'''L'''<sub>1</sub>}} is an {{math|''r'' Γ ''r''}} lower triangular matrix with positive diagonal.<ref>{{Cite book |last=Higham |first=Nicholas J. |chapter-url=http://eprints.maths.manchester.ac.uk/1193/ |title=Reliable Numerical Computation |publisher=Oxford University Press |year=1990 |isbn=978-0-19-853564-5 |editor-last=Cox |editor-first=M. G. |location=Oxford, UK |pages=161β185 |language=en |editor-last2=Hammarling |editor-first2=S. J. |chapter=Analysis of the Cholesky Decomposition of a Semi-definite Matrix}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)