Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Classical XY model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== Given a {{mvar|D}}-dimensional [[Lattice model (physics)|lattice]] {{math|Ξ}}, per each lattice site {{math|''j'' β Ξ}} there is a two-dimensional, [[Unit vector|unit-length vector]] {{math|'''s'''<sub>''j''</sub> {{=}} (cos ''ΞΈ<sub>j</sub>'', sin ''ΞΈ<sub>j</sub>'')}} The ''spin configuration'', {{math|'''s''' {{=}} ('''s'''<sub>''j''</sub>)<sub>''j'' β Ξ</sub>}} is an assignment of the angle {{math|β''Ο'' < ''ΞΈ<sub>j</sub>'' β€ ''Ο''}} for each {{math|''j'' β Ξ}}. Given a ''translation-invariant'' interaction {{math|''J<sub>ij</sub>'' {{=}} ''J''(''i'' β ''j'')}} and a point dependent external field <math>\mathbf{h}_{j}=(h_j,0)</math>, the ''configuration energy'' is :<math> H(\mathbf{s}) = - \sum_{i\neq j} J_{ij}\; \mathbf{s}_i\cdot\mathbf{s}_j -\sum_j \mathbf{h}_j\cdot \mathbf{s}_j =- \sum_{i\neq j} J_{ij}\; \cos(\theta_i-\theta_j) -\sum_j h_j\cos\theta_j </math> The case in which {{math|''J<sub>ij</sub>'' {{=}} 0}} except for {{mvar|ij}} nearest neighbor is called ''nearest neighbor'' case. The ''configuration probability'' is given by the [[Boltzmann distribution]] with inverse temperature {{math|''Ξ²'' β₯ 0}}: :<math>P(\mathbf{s})=\frac{e^{-\beta H(\mathbf{s})}}{Z} \qquad Z=\int_{[-\pi,\pi]^\Lambda} \prod_{j\in \Lambda} d\theta_j\;e^{-\beta H(\mathbf{s})}.</math> where {{mvar|Z}} is the [[Normalizing constant|normalization]], or [[partition function (statistical mechanics)|partition function]].<ref name=chaikin>{{cite book|last1=Chaikin|first1=P.M.|last2=Lubensky|first2=T.C.|title=Principles of Condensed Matter Physics|year=2000|publisher=Cambridge University Press|isbn=978-0521794503|url=https://books.google.com/books?id=P9YjNjzr9OIC}}</ref> The notation <math>\langle A(\mathbf{s})\rangle</math> indicates the expectation of the random variable {{math|''A''('''s''')}} in the infinite volume limit, after ''[[periodic boundary conditions]]'' have been imposed.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)