Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Classical orthogonal polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == In general, the orthogonal polynomials <math>P_n</math> with respect to a weight <math>W:\mathbb R \rightarrow \mathbb R^+ </math> satisfy :<math>\begin{align} &\deg P_n = n~, \quad n = 0,1,2,\ldots\\ &\int P_m(x) \, P_n(x) \, W(x)\,dx = 0~, \quad m \neq n~. \end{align}</math> The relations above define <math>P_n</math> up to multiplication by a number. Various normalisations are used to fix the constant, e.g. :<math> \int P_n(x)^2 W(x)\,dx = 1~.</math> The classical orthogonal polynomials correspond to the following three families of weights: :<math>\begin{align} \text{(Jacobi)}\quad &W(x) = \begin{cases} (1 - x)^\alpha (1+x)^\beta~, & -1 \leq x \leq 1 \\ 0~, &\text{otherwise} \end{cases} \\ \text{(Hermite)}\quad &W(x) = \exp(- x^2) \\ \text{(Laguerre)}\quad &W(x) = \begin{cases} x^\alpha \exp(- x)~, & x \geq 0 \\ 0~, & \text{otherwise} \end{cases} \end{align}</math> The standard normalisation (also called ''standardization'') is detailed below. ===Jacobi polynomials=== {{main article|Jacobi polynomials}} For <math>\alpha,\,\beta>-1</math> the Jacobi polynomials are given by the formula :<math>P_n^{(\alpha,\beta)} (z) = \frac{(-1)^n}{2^n n!} (1-z)^{-\alpha} (1+z)^{-\beta} \frac{d^n}{dz^n} \left\{ (1-z)^\alpha (1+z)^\beta (1 - z^2)^n \right\}~. </math> They are normalised (standardized) by :<math>P_n^{(\alpha, \beta)} (1) = {n+\alpha\choose n},</math> and satisfy the orthogonality condition :<math>\begin{align} &\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx \\ = {} & \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}. \end{align} </math> The Jacobi polynomials are solutions to the differential equation :<math> (1-x^2)y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y'+ n(n+\alpha+\beta+1) y = 0~. </math> ==== Important special cases ==== The Jacobi polynomials with <math>\alpha=\beta</math> are called the [[Gegenbauer polynomials]] (with parameter <math>\gamma = \alpha+1/2</math>) For <math>\alpha=\beta=0</math>, these are called the [[Legendre polynomials]] (for which the interval of orthogonality is [−1, 1] and the weight function is simply 1): :<math> P_0(x) = 1,\, P_1(x) = x,\,P_2(x) = \frac{3x^2-1}{2},\, P_3(x) = \frac{5x^3-3x}{2},\ldots</math> For <math>\alpha=\beta=\pm 1/2</math>, one obtains the [[Chebyshev polynomials]] (of the second and first kind, respectively). ===Hermite polynomials=== {{main article|Hermite polynomials}} The Hermite polynomials are defined by<ref>other conventions are also used; see [[Hermite polynomials]].</ref> :<math> H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}e^{-x^2}=e^{x^2/2}\bigg (x-\frac{d}{dx} \bigg )^n e^{-x^2/2}</math> They satisfy the orthogonality condition :<math> \int_{-\infty}^\infty H_n(x) H_m(x) e^{-x^2} \, dx = \sqrt{\pi} 2^n n! \delta_{mn}~, </math> and the differential equation :<math>y'' - 2xy' + 2n\,y = 0~.</math> ===Laguerre polynomials=== {{main article|Laguerre polynomials}} The generalised Laguerre polynomials are defined by : <math>L_n^{(\alpha)}(x)= {x^{-\alpha} e^x \over n!}{d^n \over dx^n} \left(e^{-x} x^{n+\alpha}\right)</math> (the classical Laguerre polynomials correspond to <math>\alpha=0</math>.) They satisfy the orthogonality relation : <math>\int_0^\infty x^\alpha e^{-x} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x) \, dx=\frac{\Gamma(n+\alpha+1)}{n!}\delta_{n,m}~,</math> and the differential equation :<math> x\,y'' + (\alpha +1 - x)\,y' + n\,y = 0~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)