Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Classifying space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Motivation== An example of a classifying space for the [[infinite cyclic group]] ''G'' is the [[circle]] as ''X''. When ''G'' is a [[discrete group]], another way to specify the condition on ''X'' is that the [[universal cover]] ''Y'' of ''X'' is [[contractible]]. In that case the projection map :<math>\pi\colon Y\longrightarrow X\ </math> becomes a [[fiber bundle]] with structure group ''G'', in fact a [[principal bundle]] for ''G''. The interest in the classifying space concept really arises from the fact that in this case ''Y'' has a [[universal property]] with respect to principal ''G''-bundles, in the [[homotopy category]]. This is actually more basic than the condition that the higher homotopy groups vanish: the fundamental idea is, given ''G'', to find such a contractible space ''Y'' on which ''G'' acts ''[[Group action (mathematics)#Types of actions|freely]]''. (The [[weak equivalence (homotopy theory)|weak equivalence]] idea of homotopy theory relates the two versions.) In the case of the circle example, what is being said is that we remark that an infinite cyclic group ''C'' acts freely on the [[real line]] ''R'', which is contractible. Taking ''X'' as the [[Quotient space (topology)|quotient space]] circle, we can regard the projection Ο from ''R'' = ''Y'' to ''X'' as a [[helix]] in geometrical terms, undergoing projection from three dimensions to the plane. What is being claimed is that Ο has a universal property amongst principal ''C''-bundles; that any principal ''C''-bundle in a definite way 'comes from' Ο.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)