Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coenzyme Q10
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Biological functions== {{See also|Q cycle}} CoQ<sub>10</sub> is a component of the mitochondrial [[electron transport chain]] (ETC), where it plays a role in oxidative phosphorylation, a process required for the biosynthesis of adenosine triphosphate, the primary energy source of cells.<ref name=lpi/><ref name="pmid34064686"/><ref name="pmid34596729">{{cite journal |vauthors=Pradhan N, Singh C, Singh A |title=Coenzyme Q10 a mitochondrial restorer for various brain disorders |journal=Naunyn Schmiedebergs Arch Pharmacol |volume=394 |issue=11 |pages=2197–2222 |date=November 2021 |pmid=34596729 |doi=10.1007/s00210-021-02161-8}}</ref> CoQ<sub>10</sub> is a [[Lipophilicity|lipophilic]] molecule that is located in all biological membranes of human body and serves as a component for the synthesis of ATP and is a life-sustaining cofactor for the three complexes ([[complex I]], [[complex II]], and [[complex III]]) of the ETC in the mitochondria.<ref name=lpi/><ref name="Kadian-2022"/> CoQ<sub>10</sub> has a role in the transport of [[proton]]s across [[lysosome|lysosomal]] membranes to regulate pH in lysosome functions.<ref name=lpi/> The mitochondrial oxidative phosphorylation process occurs in the inner mitochondrial membrane of eukaryotic cells.<ref name=lpi/> This membrane is highly folded into structures called cristae, which increase the surface area available for oxidative phosphorylation. CoQ<sub>10</sub> plays a role in this process as an essential cofactor of the ETC located in the inner mitochondrial membrane and serves the following functions:<ref name=lpi/><ref name="pmid34596729"/> * electron transport in the mitochondrial ETC, by shuttling electrons from mitochondrial complexes like [[nicotinamide adenine dinucleotide]] (NADH), [[ubiquinone reductase]] (complex I), and succinate ubiquinone reductase (complex II), the fatty acids and branched-chain amino acids oxidation (through flavin-linked dehydrogenases) to [[Ubiquinol--cytochrome-c reductase|ubiquinol–cytochrome-c reductase]] (complex III) of the ETC:<ref name=lpi/><ref name="pmid34596729"/> CoQ<sub>10</sub> participates in fatty acid and glucose metabolism by transferring electrons generated from the reduction of fatty acids and glucose to electron acceptors;<ref name="pmid33291255">{{cite journal |vauthors=Manzar H, Abdulhussein D, Yap TE, Cordeiro MF |title=Cellular Consequences of Coenzyme Q10 Deficiency in Neurodegeneration of the Retina and Brain |journal=Int J Mol Sci |volume=21 |issue=23 |date=December 2020 |page=9299 |pmid=33291255 |pmc=7730520 |doi=10.3390/ijms21239299 |doi-access=free}}{{Creative Commons text attribution notice|cc=by4|from this source=yes}}</ref> * antioxidant activity as a lipid-soluble antioxidant together with [[vitamin E]], scavenging [[reactive oxygen species]] and protecting cells against oxidative stress,<ref name=lpi/><ref name="pmid34064686"/> inhibiting the oxidation of proteins, DNA, and use of vitamin E.<ref name=lpi/><ref name="pmid32349341">{{cite journal |vauthors=Di Lorenzo A, Iannuzzo G, Parlato A, Cuomo G, Testa C, Coppola M, D'Ambrosio G, Oliviero DA, Sarullo S, Vitale G, Nugara C, Sarullo FM, Giallauria F |title=Clinical Evidence for Q10 Coenzyme Supplementation in Heart Failure: From Energetics to Functional Improvement |journal=J Clin Med |volume=9 |issue=5 |date=April 2020 |page=1266 |pmid=32349341 |pmc=7287951 |doi=10.3390/jcm9051266 | doi-access=free}}{{Creative Commons text attribution notice|cc=by4|from this source=yes}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)