Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Computing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == {{Main|History of computing}} {{For timeline}} The history of computing is longer than the [[history of computing hardware]] and includes the history of methods intended for pen and paper (or for chalk and slate) with or without the aid of tables. Computing is intimately tied to the representation of numbers, though mathematical concepts necessary for computing existed before [[numeral system]]s. The earliest known tool for use in computation is the [[abacus]], and it is thought to have been invented in [[Babylon]] circa between 2700 and 2300 BC. Abaci, of a more modern design, are still used as calculation tools today. The first recorded proposal for using digital electronics in computing was the 1931 paper "The Use of Thyratrons for High Speed Automatic Counting of Physical Phenomena" by [[C. E. Wynn-Williams]].<ref>{{Citation | last = Wynn-Williams | first = C. E. | author-link = C. E. Wynn-Williams | title = The Use of Thyratrons for High Speed Automatic Counting of Physical Phenomena | journal = [[Proceedings of the Royal Society A]] | volume = 132 | issue = 819 | pages = 295β310 | date = 2 July 1931 | doi = 10.1098/rspa.1931.0102 |bibcode = 1931RSPSA.132..295W | doi-access = free }}</ref> [[Claude Shannon]]'s 1938 paper "[[A Symbolic Analysis of Relay and Switching Circuits]]" then introduced the idea of using electronics for [[Boolean algebra]]ic operations. The concept of a [[field-effect transistor]] was proposed by [[Julius Edgar Lilienfeld]] in 1925. [[John Bardeen]] and [[Walter Brattain]], while working under [[William Shockley]] at [[Bell Labs]], built the first working [[transistor]], the [[point-contact transistor]], in 1947.<ref name="Lee">{{cite book |last1=Lee |first1=Thomas H. |title=The Design of CMOS Radio-Frequency Integrated Circuits |date=2003 |publisher=[[Cambridge University Press]] |isbn=9781139643771 |url=https://web.stanford.edu/class/archive/ee/ee214/ee214.1032/Handouts/HO2.pdf |access-date=16 September 2019 |archive-date=9 December 2019 |archive-url=https://web.archive.org/web/20191209032130/https://web.stanford.edu/class/archive/ee/ee214/ee214.1032/Handouts/HO2.pdf |url-status=dead }}</ref><ref name="Puers">{{cite book |last1=Puers |first1=Robert |last2=Baldi |first2=Livio |last3=Voorde |first3=Marcel Van de |last4=Nooten |first4=Sebastiaan E. van |title=Nanoelectronics: Materials, Devices, Applications, 2 Volumes |date=2017 |publisher=[[John Wiley & Sons]] |isbn=9783527340538 |page=14 |url=https://books.google.com/books?id=JOqVDgAAQBAJ&pg=PA14}}</ref> In 1953, the [[University of Manchester]] built the first [[transistorized computer]], the [[Manchester Baby]].<ref>{{Citation|last=Lavington|first=Simon|title=A History of Manchester Computers|year=1998|edition=2|publisher=The British Computer Society|location=Swindon|pages=34β35}}</ref> However, early [[junction transistor]]s were relatively bulky devices that were difficult to mass-produce, which limited them to a number of specialised applications.<ref name="Moskowitz">{{cite book |last1=Moskowitz |first1=Sanford L. |title=Advanced Materials Innovation: Managing Global Technology in the 21st century |date=2016 |publisher=[[John Wiley & Sons]] |isbn=9780470508923 |pages=165β167 |url=https://books.google.com/books?id=2STRDAAAQBAJ&pg=PA165}}</ref> In 1957, Frosch and Derick were able to manufacture the first silicon dioxide field effect transistors at Bell Labs, the first transistors in which drain and source were adjacent at the surface.<ref>{{Cite journal |last1=Frosch |first1=C. J. |last2=Derick |first2=L |date=1957 |title=Surface Protection and Selective Masking during Diffusion in Silicon |url=https://iopscience.iop.org/article/10.1149/1.2428650 |journal=Journal of the Electrochemical Society |language=en |volume=104 |issue=9 |pages=547 |doi=10.1149/1.2428650|url-access=subscription }}</ref> Subsequently, a team demonstrated a working [[MOSFET]] at Bell Labs 1960.<ref>{{Cite journal |last=KAHNG |first=D. |date=1961 |title=Silicon-Silicon Dioxide Surface Device |url=https://doi.org/10.1142/9789814503464_0076 |journal=Technical Memorandum of Bell Laboratories |pages=583β596 |doi=10.1142/9789814503464_0076 |isbn=978-981-02-0209-5|url-access=subscription }}</ref><ref>{{Cite book |last=Lojek |first=Bo |title=History of Semiconductor Engineering |date=2007 |publisher=Springer-Verlag Berlin Heidelberg |isbn=978-3-540-34258-8 |location=Berlin, Heidelberg |page=321}}</ref> The MOSFET made it possible to build [[very large-scale integration|high-density integrated circuits]],<ref name="computerhistory-transistor">{{cite web |title=Who Invented the Transistor? |url=https://www.computerhistory.org/atchm/who-invented-the-transistor/ |website=[[Computer History Museum]] |date=4 December 2013 |access-date=20 July 2019}}</ref><ref name="Hittinger">{{cite journal |last1=Hittinger |first1=William C. |title=Metal-Oxide-Semiconductor Technology |journal=Scientific American |date=1973 |volume=229 |issue=2 |pages=48β59 |issn=0036-8733|jstor=24923169 |doi=10.1038/scientificamerican0873-48 |bibcode=1973SciAm.229b..48H }}</ref> leading to what is known as the [[computer revolution]]<ref>{{cite book|author1-link=Jerry G. Fossum |last1=Fossum |first1=Jerry G. |last2=Trivedi |first2=Vishal P. |title=Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs |date=2013 |publisher=[[Cambridge University Press]] |isbn=9781107434493 |page=vii |url=https://books.google.com/books?id=zZJfAAAAQBAJ&pg=PR7}}</ref> or [[microcomputer revolution]].<ref>{{cite book |last1=Malmstadt |first1=Howard V. |last2=Enke |first2=Christie G. |last3=Crouch |first3=Stanley R. |title=Making the Right Connections: Microcomputers and Electronic Instrumentation |date=1994 |publisher=[[American Chemical Society]] |isbn=9780841228610 |page=389 |url=https://books.google.com/books?id=lyJGAQAAIAAJ |quote=The relative simplicity and low power requirements of MOSFETs have fostered today's microcomputer revolution.}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)