Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Concave function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== A real-valued [[function (mathematics)|function]] <math>f</math> on an [[interval (mathematics)|interval]] (or, more generally, a [[convex set]] in [[vector space]]) is said to be ''concave'' if, for any <math>x</math> and <math>y</math> in the interval and for any <math>\alpha \in [0,1]</math>,<ref>{{cite book |last1=Lenhart |first1=S. |last2=Workman |first2=J. T. |title=Optimal Control Applied to Biological Models |publisher=Chapman & Hall/ CRC |series=Mathematical and Computational Biology Series |year=2007 |isbn=978-1-58488-640-2 }}</ref> :<math>f((1-\alpha )x+\alpha y)\geq (1-\alpha ) f(x)+\alpha f(y)</math> A function is called ''strictly concave'' if :<math>f((1-\alpha )x+\alpha y) > (1-\alpha ) f(x)+\alpha f(y)</math> for any <math>\alpha \in (0,1)</math> and <math>x \neq y</math>. For a function <math>f: \mathbb{R} \to \mathbb{R}</math>, this second definition merely states that for every <math>z</math> strictly between <math>x</math> and <math>y</math>, the point <math>(z, f(z))</math> on the graph of <math>f</math> is above the straight line joining the points <math>(x, f(x))</math> and <math>(y, f(y))</math>. [[Image:ConcaveDef.png]] A function <math>f</math> is [[quasiconvex function|quasiconcave]] if the upper contour sets of the function <math>S(a)=\{x: f(x)\geq a\}</math> are convex sets.<ref name=":0">{{Cite book|last=Varian, Hal R.|url=https://www.worldcat.org/oclc/24847759|title=Microeconomic analysis|date=1992|publisher=Norton|isbn=0-393-95735-7|edition=3rd|location=New York|pages=489|oclc=24847759}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)