Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions == [[File:Convex supergraph.svg|right|thumb|A [[convex function|function]] is convex if and only if its [[Epigraph (mathematics)|epigraph]], the region (in green) above its [[graph of a function|graph]] (in blue), is a convex set.]] Let {{mvar|S}} be a [[vector space]] or an [[affine space]] over the [[real number]]s, or, more generally, over some [[ordered field]] (this includes Euclidean spaces, which are affine spaces). A [[subset]] {{mvar|C}} of {{mvar|S}} is '''convex''' if, for all {{mvar|x}} and {{mvar|y}} in {{mvar|C}}, the [[line segment]] connecting {{mvar|x}} and {{mvar|y}} is included in {{mvar|C}}. This means that the [[affine combination]] {{math|(1 β ''t'')''x'' + ''ty''}} belongs to {{mvar|C}} for all {{mvar|x,y}} in {{mvar|C}} and {{mvar|t}} in the [[interval (mathematics)|interval]] {{math|[0, 1]}}. This implies that convexity is invariant under [[affine transformation]]s. Further, it implies that a convex set in a [[real number|real]] or [[complex number|complex]] [[topological vector space]] is [[path-connected]] (and therefore also [[connected space|connected]]). A set {{mvar|C}} is '''{{visible anchor|strictly convex}}''' if every point on the line segment connecting {{mvar|x}} and {{mvar|y}} other than the endpoints is inside the [[Interior (topology)|topological interior]] of {{mvar|C}}. A closed convex subset is strictly convex if and only if every one of its [[Boundary (topology)|boundary points]] is an [[extreme point]].<ref>{{Halmos A Hilbert Space Problem Book 1982|p=5}}</ref> A set {{mvar|C}} is '''[[absolutely convex]]''' if it is convex and [[balanced set|balanced]]. ===Examples=== The convex [[subset]]s of {{math|'''R'''}} (the set of real numbers) are the intervals and the points of {{math|'''R'''}}. Some examples of convex subsets of the [[Euclidean plane]] are solid [[regular polygon]]s, solid triangles, and intersections of solid triangles. Some examples of convex subsets of a [[Euclidean space|Euclidean 3-dimensional space]] are the [[Archimedean solid]]s and the [[Platonic solid]]s. The [[Kepler-Poinsot polyhedra]] are examples of non-convex sets. === Non-convex set === A set that is not convex is called a ''non-convex set''. A [[polygon]] that is not a [[convex polygon]] is sometimes called a [[concave polygon]],<ref>{{cite book |first=Jeffrey J. |last=McConnell |year=2006 |title=Computer Graphics: Theory Into Practice |isbn=0-7637-2250-2 |page=[https://archive.org/details/computergraphics0000mcco/page/130 130] |publisher=Jones & Bartlett Learning |url=https://archive.org/details/computergraphics0000mcco/page/130 }}.</ref> and some sources more generally use the term ''concave set'' to mean a non-convex set,<ref>{{MathWorld|title=Concave|id=Concave}}</ref> but most authorities prohibit this usage.<ref>{{cite book|title=Analytical Methods in Economics|first=Akira|last=Takayama|publisher=University of Michigan Press|year=1994|isbn=9780472081356|url=https://books.google.com/books?id=_WmZA0MPlmEC&pg=PA54|page=54|quote=An often seen confusion is a "concave set". Concave and convex functions designate certain classes of functions, not of sets, whereas a convex set designates a certain class of sets, and not a class of functions. A "concave set" confuses sets with functions.}}</ref><ref>{{cite book|title=An Introduction to Mathematical Analysis for Economic Theory and Econometrics|first1=Dean|last1=Corbae|first2=Maxwell B.|last2=Stinchcombe|first3= Juraj|last3=Zeman|publisher=Princeton University Press|year=2009|isbn=9781400833085|url=https://books.google.com/books?id=j5P83LtzVO8C&pg=PT347|page=347|quote=There is no such thing as a concave set.}}</ref> The [[Complement (set theory)|complement]] of a convex set, such as the [[epigraph (mathematics)|epigraph]] of a [[concave function]], is sometimes called a ''reverse convex set'', especially in the context of [[mathematical optimization]].<ref>{{cite journal | last = Meyer | first = Robert | journal = SIAM Journal on Control and Optimization | mr = 0312915 | pages = 41β54 | title = The validity of a family of optimization methods | volume = 8 | year = 1970| doi = 10.1137/0308003 | url = https://minds.wisconsin.edu/bitstream/handle/1793/57508/TR28.pdf?sequence=1 }}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)