Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convolution theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Functions of a continuous variable == Consider two functions <math>u(x)</math> and <math>v(x)</math> with [[Fourier transform]]s <math>U</math> and <math>V</math>: :<math>\begin{align} U(f) &\triangleq \mathcal{F}\{u\}(f) = \int_{-\infty}^{\infty}u(x) e^{-i 2 \pi f x} \, dx, \quad f \in \mathbb{R}\\ V(f) &\triangleq \mathcal{F}\{v\}(f) = \int_{-\infty}^{\infty}v(x) e^{-i 2 \pi f x} \, dx, \quad f \in \mathbb{R} \end{align}</math> where <math>\mathcal{F}</math> denotes the '''Fourier transform [[Operator (mathematics)|operator]]'''. The transform may be normalized in other ways, in which case constant scaling factors (typically <math>2\pi</math> or <math>\sqrt{2\pi}</math>) will appear in the convolution theorem below. The convolution of <math>u</math> and <math>v</math> is defined by: :<math>r(x) = \{u*v\}(x) \triangleq \int_{-\infty}^{\infty} u(\tau) v(x-\tau)\, d\tau = \int_{-\infty}^{\infty} u(x-\tau) v(\tau)\, d\tau.</math> In this context the [[asterisk]] denotes convolution, instead of standard multiplication. The [[tensor product]] symbol <math>\otimes</math> is sometimes used instead. The '''convolution theorem''' states that''':'''<ref name=McGillem/><ref name=Weisstein/>{{rp|eq.8}} {{Equation box 1 |indent=:|cellpadding=0|border=0|background colour=white |equation={{NumBlk|| <math>R(f) \triangleq \mathcal{F}\{r\}(f) = U(f) V(f). \quad f \in \mathbb{R}</math> |{{EquationRef|Eq.1a}} }} }} Applying the inverse Fourier transform <math>\mathcal{F}^{-1},</math> produces the corollary''':'''<ref name=Weisstein/>{{rp|eqs.7,10}} {{Equation box 1|title='''Convolution theorem''' |indent=|cellpadding=6|border=|border colour=#0073CF|background colour=#F5FFFA |equation={{NumBlk|:| <math>r(x) = \{u*v\}(x) = \mathcal{F}^{-1}\{U\cdot V\}.</math> |{{EquationRef|Eq.1b}} }} }} The theorem also generally applies to multi-dimensional functions. {{Collapse top|title=Multi-dimensional derivation of Eq.1}} Consider functions <math>u,v</math> in [[Lp space|L<sup>''p''</sup>]]-space <math>L^1(\mathbb{R}^n),</math> with Fourier transforms <math>U,V</math>''':''' :<math> \begin{align} U(f) &\triangleq \mathcal{F}\{u\}(f) = \int_{\mathbb{R}^n} u(x) e^{-i 2 \pi f \cdot x} \, dx, \quad f \in \mathbb{R}^n\\ V(f) &\triangleq \mathcal{F}\{v\}(f) = \int_{\mathbb{R}^n} v(x) e^{-i 2 \pi f \cdot x} \, dx, \end{align} </math> where <math>f\cdot x</math> indicates the [[dot product|inner product]] of '''<math>\mathbb{R}^n</math>:''' <math>f\cdot x = \sum_{j=1}^{n} {f}_j x_j,</math> and <math>dx = \prod_{j=1}^{n} d x_j.</math> The [[convolution]] of <math>u</math> and <math>v</math> is defined by''':''' :<math>r(x) \triangleq \int_{\mathbb{R}^n} u(\tau) v(x-\tau)\, d\tau.</math> Also''':''' :<math>\iint |u(\tau)v(x-\tau)|\,dx\,d\tau=\int \left( |u(\tau)| \int |v(x-\tau)|\,dx \right) \,d\tau = \int |u(\tau)|\,\|v\|_1\,d\tau=\|u\|_1 \|v\|_1.</math> Hence by [[Fubini's theorem]] we have that <math>r\in L^1(\mathbb{R}^n)</math> so its Fourier transform <math>R</math> is defined by the integral formula''':''' :<math> \begin{align} R(f) \triangleq \mathcal{F}\{r\}(f) &= \int_{\mathbb{R}^n} r(x) e^{-i 2 \pi f \cdot x}\, dx\\ &= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} u(\tau) v(x-\tau)\, d\tau\right)\, e^{-i 2 \pi f \cdot x}\, dx. \end{align} </math> Note that <math>|u(\tau)v(x-\tau)e^{-i 2\pi f \cdot x}|=|u(\tau)v(x-\tau)|,</math> Hence by the argument above we may apply Fubini's theorem again (i.e. interchange the order of integration)''':''' :<math> \begin{align} R(f) &= \int_{\mathbb{R}^n} u(\tau) \underbrace{\left(\int_{\mathbb{R}^n} v(x-\tau)\ e^{-i 2 \pi f \cdot x}\,dx\right)}_{V(f)\ e^{-i 2 \pi f \cdot \tau}}\,d\tau\\ &=\underbrace{\left(\int_{\mathbb{R}^n} u(\tau)\ e^{-i 2\pi f \cdot \tau}\,d\tau\right)}_{U(f)}\ V(f). \end{align} </math> {{Collapse bottom}} This theorem also holds for the [[Laplace transform]], the [[two-sided Laplace transform]] and, when suitably modified, for the [[Mellin transform]] and [[Hartley transform]] (see [[Mellin inversion theorem]]). It can be extended to the Fourier transform of [[abstract harmonic analysis]] defined over [[locally compact abelian group]]s. === Periodic convolution (Fourier series coefficients) === Consider <math>P</math>-periodic functions <math>u_{_P}</math> and <math>v_{_P},</math> which can be expressed as [[periodic summation]]s: :<math>u_{_P}(x)\ \triangleq \sum_{m=-\infty}^{\infty} u(x-mP)</math> and <math>v_{_P}(x)\ \triangleq \sum_{m=-\infty}^{\infty} v(x-mP).</math> In practice the non-zero portion of components <math>u</math> and <math>v</math> are often limited to duration <math>P,</math> but nothing in the theorem requires that. The [[Fourier series]] coefficients are: :<math>\begin{align} U[k] &\triangleq \mathcal{F}\{u_{_P}\}[k] = \frac{1}{P} \int_P u_{_P}(x) e^{-i 2\pi k x/P} \, dx, \quad k \in \mathbb{Z}; \quad \quad \scriptstyle \text{integration over any interval of length } P\\ V[k] &\triangleq \mathcal{F}\{v_{_P}\}[k] = \frac{1}{P} \int_P v_{_P}(x) e^{-i 2\pi k x/P} \, dx, \quad k \in \mathbb{Z} \end{align}</math> where <math>\mathcal{F}</math> denotes the '''Fourier series integral'''. * The product: <math>u_{_P}(x)\cdot v_{_P}(x)</math> is also <math>P</math>-periodic, and its Fourier series coefficients are given by the [[Convolution#Discrete convolution|discrete convolution]] of the <math>U</math> and <math>V</math> sequences: :<math>\mathcal{F}\{u_{_P}\cdot v_{_P}\}[k] = \{U*V\}[k].</math> *The convolution: :<math>\begin{align} \{u_{_P} * v\}(x)\ &\triangleq \int_{-\infty}^{\infty} u_{_P}(x-\tau)\cdot v(\tau)\ d\tau\\ &\equiv \int_P u_{_P}(x-\tau)\cdot v_{_P}(\tau)\ d\tau; \quad \quad \scriptstyle \text{integration over any interval of length } P \end{align}</math> is also <math>P</math>-periodic, and is called a '''[[periodic convolution]]'''. {{Collapse top|title=Derivation of periodic convolution}} :<math>\begin{align} \int_{-\infty}^\infty u_{_P}(x - \tau) \cdot v(\tau)\,d\tau &= \sum_{k=-\infty}^\infty \left[\int_{x_o+kP}^{x_o+(k+1)P} u_{_P}(x - \tau) \cdot v(\tau)\ d\tau\right] \quad x_0 \text{ is an arbitrary parameter}\\ &=\sum_{k=-\infty}^\infty \left[\int_{x_o}^{x_o+P} \underbrace{u_{_P}(x - \tau-kP)}_{u_{_P}(x - \tau), \text{ by periodicity}} \cdot v(\tau + kP)\ d\tau\right] \quad \text{substituting } \tau \rightarrow \tau+kP\\ &=\int_{x_o}^{x_o+P} u_{_P}(x - \tau) \cdot \underbrace{\left[\sum_{k=-\infty}^\infty v(\tau + kP)\right]}_{\triangleq \ v_{_P}(\tau)}\ d\tau \end{align}</math> {{Collapse bottom}} The corresponding convolution theorem is''':''' {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>\mathcal{F}\{u_{_P} * v\}[k] =\ P\cdot U[k]\ V[k].</math> |{{EquationRef|Eq.2}} }} }} <!--{{math proof|title=Derivation of Eq.2| proof = --> {{Collapse top|title=Derivation of Eq.2}} :<math>\begin{align} \mathcal{F}\{u_{_P} * v\}[k] &\triangleq \frac{1}{P} \int_P \left(\int_P u_{_P}(\tau)\cdot v_{_P}(x-\tau)\ d\tau\right) e^{-i 2\pi k x/P} \, dx\\ &= \int_P u_{_P}(\tau)\left(\frac{1}{P}\int_P v_{_P}(x-\tau)\ e^{-i 2\pi k x/P} dx\right) \, d\tau\\ &= \int_P u_{_P}(\tau)\ e^{-i 2\pi k \tau/P} \underbrace{\left(\frac{1}{P}\int_P v_{_P}(x-\tau)\ e^{-i 2\pi k (x-\tau)/P} dx\right)}_{V[k], \quad \text{due to periodicity}} \, d\tau\\ &=\underbrace{\left(\int_P\ u_{_P}(\tau)\ e^{-i 2\pi k \tau/P} d\tau\right)}_{P\cdot U[k]}\ V[k]. \end{align}</math> {{Collapse bottom }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)