Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coproduct
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Let <math>C</math> be a [[Category (mathematics)|category]] and let <math>X_1</math> and <math>X_2</math> be objects of <math>C.</math> An object is called the coproduct of <math>X_1</math> and <math>X_2,</math> written <math>X_1 \sqcup X_2,</math> or <math>X_1 \oplus X_2,</math> or sometimes simply <math>X_1 + X_2,</math> if there exist morphisms <math>i_1 : X_1 \to X_1 \sqcup X_2</math> and <math>i_2 : X_2 \to X_1 \sqcup X_2</math> that satisfies the following [[universal property]]: for any object <math>Y</math> and any morphisms <math>f_1 : X_1 \to Y</math> and <math>f_2 : X_2 \to Y,</math> there exists a unique morphism <math>f : X_1 \sqcup X_2 \to Y</math> such that <math>f_1 = f \circ i_1</math> and <math>f_2 = f \circ i_2.</math> That is, the following diagram [[Commutative diagram|commutes]]: [[Image:Coproduct-03.svg|280px|center]] The unique arrow <math>f</math> making this diagram commute may be denoted <math>f_1 \sqcup f_2,</math> <math>f_1 \oplus f_2,</math> <math>f_1 + f_2,</math> or <math>\left[f_1, f_2\right].</math> The morphisms <math>i_1</math> and <math>i_2</math> are called {{em|[[canonical injection]]s}}, although they need not be [[Injective function|injections]] or even [[Monomorphism|monic]]. The definition of a coproduct can be extended to an arbitrary [[Indexed family|family]] of objects indexed by a set <math>J.</math> The coproduct of the family <math>\left\{ X_j : j \in J \right\}</math> is an object <math>X</math> together with a collection of [[morphism]]s <math>i_j : X_j \to X</math> such that, for any object <math>Y</math> and any collection of morphisms <math>f_j : X_j \to Y</math> there exists a unique morphism <math>f : X \to Y</math> such that <math>f_j = f \circ i_j.</math> That is, the following diagram [[Commutative diagram|commutes]] for each <math>j \in J</math>: [[Image:Coproduct-01.svg|160px|center]] The coproduct <math>X</math> of the family <math>\left\{ X_j \right\}</math> is often denoted <math>\coprod_{j\in J}X_j</math> or <math>\bigoplus_{j \in J} X_j.</math> Sometimes the morphism <math>f : X \to Y</math> may be denoted <math>\coprod_{j \in J} f_j</math> to indicate its dependence on the individual <math>f_j</math>s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)