Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coxeter group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== Formally, a '''Coxeter group''' can be defined as a group with the [[Presentation of a group|presentation]] :<math>\left\langle r_1,r_2,\ldots,r_n \mid (r_ir_j)^{m_{ij}}=1\right\rangle</math> where <math>m_{ii}=1</math> and <math>m_{ij} = m_{ji} \ge 2</math> is either an integer or <math> \infty </math> for <math>i\neq j</math>. Here, the condition <math>m_{i j}=\infty</math> means that no relation of the form <math>(r_ir_j)^m = 1</math> for any integer <math> m \ge 2</math> should be imposed. The pair <math>(W,S)</math> where <math>W</math> is a Coxeter group with generators <math>S=\{r_1, \dots , r_n\}</math> is called a '''Coxeter system'''. Note that in general <math>S</math> is ''not'' uniquely determined by <math>W</math>. For example, the Coxeter groups of type <math>B_3</math> and <math>A_1\times A_3</math> are isomorphic but the Coxeter systems are not equivalent, since the former has 3 generators and the latter has 1 + 3 = 4 generators (see below for an explanation of this notation). A number of conclusions can be drawn immediately from the above definition. * The relation <math>m_{ii} = 1</math> means that <math>(r_ir_i)^1 = (r_i)^2 = 1</math> for all <math>i</math> ; as such the generators are [[involution (mathematics)|involution]]s. * If <math>m_{ij} = 2</math>, then the generators <math>r_i</math> and <math>r_j</math> commute. This follows by observing that ::<math>xx = yy = 1</math>, : together with ::<math>xyxy = 1</math> : implies that ::<math>xy = x(xyxy)y = (xx)yx(yy) = yx</math>. :Alternatively, since the generators are involutions, <math>r_i = r_i^{-1}</math>, so <math>1 =(r_ir_j)^2=r_ir_jr_ir_j=r_ir_jr_i^{-1}r_j^{-1}</math>. That is to say, the [[commutator]] of <math>r_i</math> and <math>r_j</math> is equal to 1, or equivalently that <math>r_i</math> and <math>r_j</math> commute. The reason that <math>m_{ij} = m_{ji}</math> for <math>i \neq j</math> is stipulated in the definition is that :<math>yy = 1</math>, together with :<math>(xy)^m = 1</math> already implies that :<math>(yx)^m = (yx)^myy = y(xy)^my = yy = 1</math>. An alternative proof of this implication is the observation that <math>(xy)^k</math> and <math>(yx)^k</math> are [[conjugate elements|conjugates]]: indeed <math>y(xy)^k y^{-1} = (yx)^k yy^{-1}=(yx)^k</math>. ===Coxeter matrix and Schläfli matrix=== The '''Coxeter matrix''' is the <math>n\times n</math> [[symmetric matrix]] with entries <math>m_{ij}</math>. Indeed, every symmetric matrix with diagonal entries exclusively 1 and nondiagonal entries in the set <math>\{2,3,\ldots\} \cup \{\infty\}</math> is a Coxeter matrix. The Coxeter matrix can be conveniently encoded by a '''[[Coxeter–Dynkin diagram|Coxeter diagram]]''', as per the following rules. * The vertices of the graph are labelled by generator subscripts. * Vertices <math>i</math> and <math>j</math> are adjacent if and only if <math>m_{ij}\geq 3</math>. * An edge is labelled with the value of <math>m_{ij}</math> whenever the value is <math>4</math> or greater. In particular, two generators [[commutative operation|commute]] if and only if they are not joined by an edge. Furthermore, if a Coxeter graph has two or more [[connected component (graph theory)|connected component]]s, the associated group is the [[direct product of groups|direct product]] of the groups associated to the individual components. Thus the [[disjoint union]] of Coxeter graphs yields a [[direct product of groups|direct product]] of Coxeter groups. The Coxeter matrix, <math>M_{ij}</math>, is related to the <math>n\times n</math> [[Schläfli matrix]] <math>C</math> with entries <math>C_{ij} = -2\cos(\pi/M_{ij})</math>, but the elements are modified, being proportional to the [[dot product]] of the pairwise generators. The Schläfli matrix is useful because its [[eigenvalues]] determine whether the Coxeter group is of ''finite type'' (all positive), ''affine type'' (all non-negative, at least one zero), or ''indefinite type'' (otherwise). The indefinite type is sometimes further subdivided, e.g. into hyperbolic and other Coxeter groups. However, there are multiple non-equivalent definitions for hyperbolic Coxeter groups. {| class=wikitable |+ Examples |- align=center !Coxeter group ! A<sub>1</sub>×A<sub>1</sub> ! A<sub>2</sub> ! B<sub>2</sub> ! I<sub>2</sub>(5) ! G<sub>2</sub> ! <math>{\tilde{A}}_1 = I_2(\infty)</math> ! A<sub>3</sub> ! B<sub>3</sub> ! D<sub>4</sub> ! <math>{\tilde{A}}_3</math> |- align=center !Coxeter diagram |{{CDD|node|2|node}} |{{CDD|node|3|node}} |{{CDD|node|4|node}} |{{CDD|node|5|node}} |{{CDD|node|6|node}} |{{CDD|node|infin|node}} |{{CDD|node|3|node|3|node}} |{{CDD|node|4|node|3|node}} |{{CDD|node|3|node|split1|nodes}} |{{CDD|node|split1|nodes|split2|node}} |- align=center !Coxeter matrix |<math>\left [ \begin{smallmatrix} 1 & 2 \\ 2 & 1 \\ \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & 3 \\ 3 & 1 \\ \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & 4 \\ 4 & 1 \\ \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & 5 \\ 5 & 1 \\ \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & 6 \\ 6 & 1 \\ \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & \infty \\ \infty & 1 \\ \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & 3 & 2 \\ 3 & 1 & 3 \\ 2 & 3 & 1 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & 4 & 2 \\ 4 & 1 & 3 \\ 2 & 3 & 1 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & 3 & 2 & 2 \\ 3 & 1 & 3 & 3 \\ 2 & 3 & 1 & 2\\ 2 & 3 & 2 & 1 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} 1 & 3 & 2 & 3 \\ 3 & 1 & 3 & 2 \\ 2 & 3 & 1 & 3\\ 3 & 2 & 3 & 1 \end{smallmatrix}\right ]</math> |- align=center !Schläfli matrix |<math>\left [ \begin{smallmatrix} 2 & 0 \\ 0 & 2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,2 & -1 \\ -1 & \ \,2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,2 & -\sqrt2 \\ -\sqrt2 & \ \,2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,2 & -\phi \\ -\phi & \ \,2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,2 & -\sqrt3 \\ -\sqrt3 & \ \,2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,2 & -2 \\ -2 & \ \,2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,2 & -1 & \ \,0 \\ -1 & \ \,2 & -1 \\ \ \,0 & -1 & \ \,2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,\ \ 2 & -\sqrt{2} & \ \,0 \\ -\sqrt{2} & \ \,\ \ 2 & -1 \\ \ \,\ \ 0 & \ \,-1 & \ \,2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,2 & -1 & \ \,0 & \ \,0 \\ -1 & \ \,2 & -1 & -1 \\ \ \,0 & -1 & \ \,2 & \ \,0 \\ \ \,0 & -1 & \ \,0 & \ \,2 \end{smallmatrix}\right ]</math> |<math>\left [ \begin{smallmatrix} \ \,2 & -1 & \ \,0 & -1 \\ -1 & \ \,2 & -1 & \ \,0 \\ \ \,0 & -1 & \ \,2 & -1 \\ -1 & \ \,0 & -1 & \ \,2 \end{smallmatrix}\right ]</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)