Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Creode
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Developmental biology== Waddington used the term along with [[canalisation (genetics)|canalisation]] and [[homeorhesis]], which describes a system that returns to a steady trajectory, in contrast to [[homeostasis]], which describes a system which returns to a steady state. Waddington explains development with the metaphor of a ball rolling down a hillside, where the hill's contours channel the ball in a particular direction. In the case of a pathway or creode which is deeply carved in the hillside, external disturbance is unlikely to prevent normal development. He notes that creodes tend to have steeper sides earlier in development, when external disturbance rarely suffices to alter the developmental trajectory.<ref>Waddington, p 23</ref> Small differences in placement atop the hill can lead to dramatically different results by the time the ball reaches the bottom. This represents the tendency of neighboring regions of the early embryo to develop into different organs with radically different structures. Since intermediate structures rarely exist between organs, each ball that rolls down the hill is "[[canalisation (genetics)|canalised]]" to a region distinct from other regions, just as an eye, for instance, is distinct from an ear.<ref>Waddington, p 19</ref> Waddington refers to the network of creodes carved into the hillside as an "[[epigenetic]] landscape," meaning that the formation of the body depends on not only its [[Genetics|genetic]] makeup but the different ways genes are expressed in different regions of the embryo.<ref>Waddington, pp 30β33</ref> He expands his metaphor by describing the underside of the epigenetic landscape. Here we see that the "landscape" is really more like a giant sheet that would blow away except that a series of tension-bearing cables holds it down. The pegs that connect the cables to the ground are the genes. The cables themselves are the epigenetic factors that influence gene expression in various regions of the embryo. The depth and direction of the channels is thus determined by a combination of genetic makeup and the epigenetic [[feedback loops]] by which genes are regulated.<ref>Waddington, pp 34β37</ref> While Waddington does assert that the process of development is genetically driven, he makes no attempt to explain how this works and even offers evidence to the contrary.<ref>Waddington, p 37</ref> He observes, for instance, that genes ordinarily determine peripheral traits, such as eye color, rather than "focal" traits, such as the structure of the eye itself. Moreover, when genetic mutation influences basic structures, the result tends to be the complete transformation of a structure into another rather than piecemeal change, which Waddington illustrates with the developmental ball rolling out of one creode into another.<ref>Waddington, pp 51-52</ref> Thus his account gives the impression that genes influence development, perhaps altering the course of a region of cells, without determining the endpoints toward which the embryo develops. This interpretation is further reinforced by Waddington's discussion of the organization of the gene pool, where he points out that "the epigenetic process occurring during the development of the organism might be so buffered or canalized that the optimum end-result is produced irrespective of the genes which the individual contains."<ref>Waddington, p 120</ref> The more deeply creodes are carved into the epigenetic landscape, the weaker the influence of genes over development. He also argues that deep creodes will resist not only genetic but environmental pressures to change course. This phenomenon, which he calls "stabilizing selection," puts genes and environment on a par in secondary importance compared to the epigenetic system.<ref>Waddington, p 123</ref> Waddington's emphasis on epigenetics over genes prefigured the current interest in [[evolutionary developmental biology]]. As [[Sean B. Carroll]] and others have explained, genes involved in development are roughly the same in all animal species, from insect to primate. Instead of mutations in developmental genes, evolution has been driven by changes in gene expression, namely which genes are expressed at which times and locations in the developing organism.<ref>[[Sean B Carroll]], ''Endless Forms Most Beautiful'', WW Norton & Company, 2005, pp 9, 64β71</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)