Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Crystallographic point group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Notation== The point groups are named according to their component symmetries. There are several standard notations used by crystallographers, [[mineralogist]]s, and [[physicists]]. For the correspondence of the two systems below, see '''[[crystal system]]'''. ===Schoenflies notation=== {{main|Schoenflies notation}} {{details|Point groups in three dimensions}} In [[Arthur Moritz Schoenflies|Schoenflies]] notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following: *''C<sub>n</sub>'' (for [[cyclic group|cyclic]]) indicates that the group has an ''n''-fold rotation axis. ''C<sub>nh</sub>'' is ''C<sub>n</sub>'' with the addition of a mirror (reflection) plane perpendicular to the [[axis of rotation]]. ''C<sub>nv</sub>'' is ''C<sub>n</sub>'' with the addition of n mirror planes parallel to the axis of rotation. *''S<sub>2n</sub>'' (for ''Spiegel'', German for [[mirror]]) denotes a group with only a ''2n''-fold [[Improper rotation|rotation-reflection axis]]. *''D<sub>n</sub>'' (for [[dihedral group|dihedral]], or two-sided) indicates that the group has an ''n''-fold rotation axis plus ''n'' twofold axes perpendicular to that axis. ''D<sub>nh</sub>'' has, in addition, a mirror plane perpendicular to the ''n''-fold axis. ''D<sub>nd</sub>'' has, in addition to the elements of ''D<sub>n</sub>'', mirror planes parallel to the ''n''-fold axis. *The letter ''T'' (for [[tetrahedron]]) indicates that the group has the symmetry of a tetrahedron. ''T<sub>d</sub>'' includes [[improper rotation]] operations, ''T'' excludes improper rotation operations, and ''T<sub>h</sub>'' is ''T'' with the addition of an inversion. *The letter ''O'' (for [[octahedron]]) indicates that the group has the symmetry of an octahedron, with (''O<sub>h</sub>'') or without (''O'') improper operations (those that change handedness). Due to the [[crystallographic restriction theorem]], ''n'' = 1, 2, 3, 4, or 6 in 2- or 3-dimensional space. {| class="wikitable" |- ! n ! 1 ! 2 ! 3 ! 4 ! 6 |- | ''C<sub>n</sub>'' | ''C<sub>1</sub>'' | ''C<sub>2</sub>'' | ''C<sub>3</sub>'' | ''C<sub>4</sub>'' | ''C<sub>6</sub>'' |- | ''C<sub>nv</sub>'' | ''C<sub>1v</sub>''=''C<sub>1h</sub>'' | ''C<sub>2v</sub>'' | ''C<sub>3v</sub>'' | ''C<sub>4v</sub>'' | ''C<sub>6v</sub>'' |- | ''C<sub>nh</sub>'' | ''C<sub>1h</sub>'' | ''C<sub>2h</sub>'' | ''C<sub>3h</sub>'' | ''C<sub>4h</sub>'' | ''C<sub>6h</sub>'' |- | ''D<sub>n</sub>'' | ''D<sub>1</sub>''=''C<sub>2</sub>'' | ''D<sub>2</sub>'' | ''D<sub>3</sub>'' | ''D<sub>4</sub>'' | ''D<sub>6</sub>'' |- | ''D<sub>nh</sub>'' | ''D<sub>1h</sub>''=''C<sub>2v</sub>'' | ''D<sub>2h</sub>'' | ''D<sub>3h</sub>'' | ''D<sub>4h</sub>'' | ''D<sub>6h</sub>'' |- | ''D<sub>nd</sub>'' | ''D<sub>1d</sub>''=''C<sub>2h</sub>'' | ''D<sub>2d</sub>'' | ''D<sub>3d</sub>'' |style="background:silver"| ''D<sub>4d</sub>'' |style="background:silver"| ''D<sub>6d</sub>'' |- | ''S<sub>2n</sub>'' | ''S<sub>2</sub>'' | ''S<sub>4</sub>'' | ''S<sub>6</sub>'' |style="background:silver"| ''S<sub>8</sub>'' |style="background:silver"| ''S<sub>12</sub>'' |} ''D<sub>4d</sub>'' and ''D<sub>6d</sub>'' are actually forbidden because they contain [[improper rotation]]s with n=8 and 12 respectively. The 27 point groups in the table plus ''T'', ''T<sub>d</sub>'', ''T<sub>h</sub>'', ''O'' and ''O<sub>h</sub>'' constitute 32 crystallographic point groups. === Hermann–Mauguin notation=== {{main|Hermann–Mauguin notation}} An abbreviated form of the [[Hermann–Mauguin notation]] commonly used for [[space group]]s also serves to describe crystallographic point groups. Group names are {| class=wikitable ! Crystal family ! Crystal system !colspan=7|Group names |- !colspan=2|[[cubic crystal system|Cubic]] |23|| m{{overline|3}}|| || 432|| {{overline|4}}3m|| m{{overline|3}}m || |- !rowspan=2|[[hexagonal crystal family|Hexagonal]] !Hexagonal |6|| {{overline|6}}|| <sup>6</sup>⁄<sub>m</sub>|| 622|| 6mm|| {{overline|6}}m2|| 6/mmm |- !Trigonal |3|| {{overline|3}}|| || 32|| 3m|| {{overline|3}}m || |- !colspan=2|[[tetragonal crystal system|Tetragonal]] |4||{{overline|4}}|| <sup>4</sup>⁄<sub>m</sub>|| 422|| 4mm|| {{overline|4}}2m||4/mmm |- !colspan=2|[[orthorhombic crystal system|Orthorhombic]] | || || ||222|| || mm2|| mmm |- !colspan=2|[[monoclinic crystal system|Monoclinic]] |2|| || <sup>2</sup>⁄<sub>m</sub>|| || m|| || |- !colspan=2|[[triclinic crystal system|Triclinic]] |1|| {{overline|1}} || || || || || |} {{clear}} ===The correspondence between different notations=== {| class="wikitable" |- !rowspan=2|Crystal family !rowspan=2|[[Crystal system]] !colspan=2|[[Hermann-Mauguin notation|Hermann-Mauguin]] !rowspan=2|Shubnikov<ref>{{cite web |url=http://it.iucr.org/Ab/ch12o1v0001/sec12o1o3/ |title=(International Tables) Abstract |access-date=2011-11-25 |url-status=dead |archive-url=https://archive.today/20130704042455/http://it.iucr.org/Ab/ch12o1v0001/sec12o1o3/ |archive-date=2013-07-04 }}</ref> !rowspan=2|[[Schoenflies notation|Schoenflies]] !rowspan=2|[[Orbifold notation|Orbifold]] !rowspan=2|[[Coxeter notation|Coxeter]] !rowspan=2|Order |- align=center !(full) !(short) |- align=center ! rowspan="2" colspan="2"|[[triclinic crystal system|Triclinic]] || 1 || 1 || <math>1\ </math>||''C<sub>1</sub>'' || 11 || [ ]<sup>+</sup> || 1 |- align=center | {{overline|1}} || {{overline|1}} || <math>\tilde{2}</math> ||''C<sub>i</sub> = S<sub>2</sub>'' || × || [2<sup>+</sup>,2<sup>+</sup>] ||2 |- align=center !rowspan="3" colspan="2"| [[monoclinic crystal system|Monoclinic]] || 2 || 2 || <math>2\ </math> ||''C<sub>2</sub>'' || 22 || [2]<sup>+</sup> || 2 |- align=center | m || m || <math>m\ </math> ||''C<sub>s</sub> = C<sub>1h</sub>'' || * || [ ] || 2 |- align=center | <math>\tfrac{2}{m}</math> || 2/m || <math>2:m\ </math> || ''C<sub>2h</sub>'' || 2* || [2,2<sup>+</sup>] || 4 |- align=center !rowspan="3" colspan="2"| [[orthorhombic crystal system|Orthorhombic]] || 222 ||222 ||<math>2:2\ </math> ||''D<sub>2</sub> = V'' || 222 || [2,2]<sup>+</sup> || 4 |- align=center | mm2 || mm2 || <math>2 \cdot m\ </math> ||''C<sub>2v</sub>'' || *22 || [2] || 4 |- align=center | <math>\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}</math> || mmm || <math>m \cdot 2:m\ </math> ||''D<sub>2h</sub>'' = ''V<sub>h</sub>'' || *222 || [2,2] || 8 |- align=center ! rowspan="7" colspan="2"|[[tetragonal crystal system|Tetragonal]] || 4 || 4 || <math>4\ </math> ||''C<sub>4</sub>'' || 44 || [4]<sup>+</sup> || 4 |- align=center | {{overline|4}} ||{{overline|4}} || <math>\tilde{4}</math> || ''S<sub>4</sub>'' || 2× || [2<sup>+</sup>,4<sup>+</sup>] ||4 |- align=center | <math>\tfrac{4}{m}</math> || 4/m || <math>4:m\ </math>|| ''C<sub>4h</sub>'' || 4* || [2,4<sup>+</sup>] || 8 |- align=center |422 || 422 || <math>4:2\ </math> || ''D<sub>4</sub>'' || 422 || [4,2]<sup>+</sup> || 8 |- align=center |4mm || 4mm ||<math>4 \cdot m\ </math> || ''C<sub>4v</sub>'' || *44 || [4] || 8 |- align=center | {{overline|4}}2m || {{overline|4}}2m || <math>\tilde{4}\cdot m</math> || ''D<sub>2d</sub>'' = ''V<sub>d</sub>''|| 2*2 || [2<sup>+</sup>,4] || 8 |- align=center | <math>\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}</math> || 4/mmm || <math>m \cdot 4:m\ </math> || ''D<sub>4h</sub>'' || *422 || [4,2] || 16 |- align=center !rowspan="12"|[[hexagonal crystal family|Hexagonal]] !rowspan="5"|Trigonal || 3 || 3 || <math>3\ </math> || ''C<sub>3</sub>'' || 33 || [3]<sup>+</sup> || 3 |- align=center |{{overline|3}} || {{overline|3}} ||<math>\tilde{6}</math> || ''C<sub>3i</sub> = S<sub>6</sub>'' || 3× || [2<sup>+</sup>,6<sup>+</sup>] ||6 |- align=center | 32 || 32 || <math>3:2\ </math> || ''D<sub>3</sub>'' || 322 || [3,2]<sup>+</sup> || 6 |- align=center | 3m || 3m || <math>3 \cdot m\ </math> || ''C<sub>3v</sub>'' || *33 || [3] || 6 |- align=center | {{overline|3}}<math>\tfrac{2}{m}</math> ||{{overline|3}}m || <math>\tilde{6}\cdot m</math> || ''D<sub>3d</sub>'' || 2*3 || [2<sup>+</sup>,6] || 12 |- align=center ! rowspan="7"|Hexagonal ||6 || 6 || <math>6\ </math> || ''C<sub>6</sub>'' || 66 || [6]<sup>+</sup> || 6 |- align=center | {{overline|6}} || {{overline|6}} || <math>3:m\ </math> || ''C<sub>3h</sub>'' || 3* || [2,3<sup>+</sup>] || 6 |- align=center | <math>\tfrac{6}{m}</math> || 6/m || <math>6:m\ </math> || ''C<sub>6h</sub>'' || 6* || [2,6<sup>+</sup>] || 12 |- align=center | 622 || 622 || <math>6:2\ </math> || ''D<sub>6</sub>'' || 622 || [6,2]<sup>+</sup> || 12 |- align=center | 6mm || 6mm ||<math>6 \cdot m\ </math> || ''C<sub>6v</sub>'' || *66 || [6] || 12 |- align=center | {{overline|6}}m2 || {{overline|6}}m2 || <math>m \cdot 3:m\ </math> || ''D<sub>3h</sub>'' || *322 || [3,2] || 12 |- align=center | <math>\tfrac{6}{m}\tfrac{2}{m}\tfrac{2}{m}</math> || 6/mmm || <math>m \cdot 6:m\ </math> || ''D<sub>6h</sub>'' || *622 || [6,2] || 24 |- align=center !rowspan="5" colspan="2"|[[cubic crystal system|Cubic]] || 23 || 23 || <math>3/2\ </math> || ''T'' || 332 || [3,3]<sup>+</sup> || 12 |- align=center | <math>\tfrac{2}{m}</math>{{overline|3}} || m{{overline|3}} || <math>\tilde{6}/2</math> || ''T<sub>h</sub>'' || 3*2 || [3<sup>+</sup>,4] || 24 |- align=center | 432 || 432 || <math>3/4\ </math> || ''O'' || 432 || [4,3]<sup>+</sup> || 24 |- align=center | {{overline|4}}3m || {{overline|4}}3m || <math>3/\tilde{4}</math> || ''T<sub>d</sub>'' || *332 || [3,3] || 24 |- align=center | <math>\tfrac{4}{m}</math>{{overline|3}}<math>\tfrac{2}{m}</math> || m{{overline|3}}m || <math>\tilde{6}/4</math> || ''O<sub>h</sub>'' || *432 || [4,3] || 48 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)