Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cunningham Project
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Factors of Cunningham number== Two types of factors can be derived from a Cunningham number without having to use a [[Integer factorization#Factoring algorithms|factorization algorithm]]: [[algebra]]ic [[factorization|factors]] of [[binomial number]]s (e.g. [[difference of two squares]] and [[sum of two cubes]]), which depend on the exponent, and [[Aurifeuillean factorization|aurifeuillean factors]], which depend on both the base and the exponent. ===Algebraic factors=== {{main|Binomial number#Factorization}} From elementary algebra, :<math>(b^{kn}-1) = (b^n-1) \sum_{r=0}^{k-1} b^{rn}</math> for all ''k'', and :<math>(b^{kn}+1) = (b^n+1) \sum_{r=0}^{k-1} (-1)^r \cdot b^{rn}</math> for [[parity (mathematics)|odd]] ''k''. In addition, {{math|1=''b''<sup>2''n''</sup> β 1 = (''b''<sup>''n''</sup> β 1)(''b''<sup>''n''</sup> + 1)}}. Thus, when ''m'' [[divides]] ''n'', {{math|1=''b''<sup>''m''</sup> β 1}} and {{math|1=''b''<sup>''m''</sup> + 1}} are factors of {{math|1=''b''<sup>''n''</sup> β 1}} if the quotient of ''n'' over ''m'' is [[parity (mathematics)|even]]; only the first number is a factor if the quotient is odd. {{math|1=''b''<sup>''m''</sup> + 1}} is a factor of {{math|1=''b''<sup>''n''</sup> β 1}}, if ''m'' divides ''n'' and the quotient is odd. In fact, :<math>b^n-1 = \prod_{d \mid n} \Phi_d(b)</math> and :<math>b^n+1 = \prod_{d \mid 2n,\, d \nmid n} \Phi_d(b)</math> See [https://stdkmd.net/nrr/repunit/repunitnote.htm#repunit_factorization this page] for more information. ===Aurifeuillean factors=== {{main|Aurifeuillean factorization}} When the number is of a particular form (the exact expression varies with the base), aurifeuillean factorization may be used, which gives a product of two or three numbers. The following equations give aurifeuillean factors for the Cunningham project bases as a product of ''F'', ''L'' and ''M'':<ref>{{cite web|title=Main Cunningham Tables|url=https://homes.cerias.purdue.edu/~ssw/cun/pmain125.txt|accessdate=15 January 2025}} At the end of tables 2LM, 3+, 5-, 6+, 7+, 10+, 11+ and 12+ there are formulae detailing the aurifeuillean factorizations.</ref> Let ''b'' = ''s''<sup>2</sup>{{times}}''k'' with [[squarefree]] ''k'', if one of the conditions holds, then <math>\Phi_n(b)</math> have aurifeuillean factorization. : (i) <math>k\equiv 1 \pmod 4</math> and <math>n\equiv k \pmod{2k};</math> : (ii) <math>k\equiv 2, 3 \pmod 4</math> and <math>n\equiv 2k \pmod{4k}.</math> {{table alignment}} {| class="wikitable col2right col3right col4center col5center" !''b'' !Number !''F'' !''L'' !''M'' !Other definitions |- !2 |2<sup>4''k''+2</sup> + 1 |1 |2<sup>2{{itco|''k''}}+1</sup> β 2<sup>{{itco|''k''}}+1</sup> + 1 |2<sup>2{{itco|''k''}}+1</sup> + 2<sup>{{itco|''k''}}+1</sup> + 1 | |- !3 |3<sup>6''k''+3</sup> + 1 |3<sup>2{{itco|''k''}}+1</sup> + 1 |3<sup>2{{itco|''k''}}+1</sup> β 3<sup>{{itco|''k''}}+1</sup> + 1 |3<sup>2{{itco|''k''}}+1</sup> + 3<sup>{{itco|''k''}}+1</sup> + 1 | |- !5 |5<sup>10''k''+5</sup> β 1 |5<sup>2{{itco|''k''}}+1</sup> β 1 |{{itco|''T''}}<sup>2</sup> β 5<sup>{{itco|''k''}}+1</sup>''T'' + 5<sup>2{{itco|''k''}}+1</sup> |{{itco|''T''}}<sup>2</sup> + 5<sup>{{itco|''k''}}+1</sup>''T'' + 5<sup>2{{itco|''k''}}+1</sup> |''T'' = 5<sup>2{{itco|''k''}}+1</sup> + 1 |- !6 |6<sup>12''k''+6</sup> + 1 |6<sup>4''k''+2</sup> + 1 |{{itco|''T''}}<sup>2</sup> β 6<sup>{{itco|''k''}}+1</sup>''T'' + 6<sup>2{{itco|''k''}}+1</sup> |{{itco|''T''}}<sup>2</sup> + 6<sup>{{itco|''k''}}+1</sup>''T'' + 6<sup>2{{itco|''k''}}+1</sup> |''T'' = 6<sup>2{{itco|''k''}}+1</sup> + 1 |- !7 |7<sup>14''k''+7</sup> + 1 |7<sup>2{{itco|''k''}}+1</sup> + 1 |''A'' β ''B'' |''A'' + ''B'' |''A'' = 7<sup>6''k''+3</sup> + 3(7<sup>4''k''+2</sup>) + 3(7<sup>2{{itco|''k''}}+1</sup>) + 1<br/>''B'' = 7<sup>5''k''+3</sup> + 7<sup>3''k''+2</sup> + 7<sup>{{itco|''k''}}+1</sup> |- !10 |10<sup>20{{itco|''k''}}+10</sup> + 1 |10<sup>4''k''+2</sup> + 1 |''A'' β ''B'' |''A'' + ''B'' |''A'' = 10<sup>8''k''+4</sup> + 5(10<sup>6''k''+3</sup>) + 7(10<sup>4''k''+2</sup>) + 5(10<sup>2{{itco|''k''}}+1</sup>) + 1<br/>''B'' = 10<sup>7''k''+4</sup> + 2(10<sup>5''k''+3</sup>) + 2(10<sup>3''k''+2</sup>) + 10<sup>{{itco|''k''}}+1</sup> |- !11 |11<sup>22{{itco|''k''}}+11</sup> + 1 |11<sup>2{{itco|''k''}}+1</sup> + 1 |''A'' β ''B'' |''A'' + ''B'' |''A'' = 11<sup>10''k''+5</sup> + 5(11<sup>8''k''+4</sup>) β 11<sup>6''k''+3</sup> β 11<sup>4''k''+2</sup> + 5(11<sup>2{{itco|''k''}}+1</sup>) + 1<br/>''B'' = 11<sup>9''k''+5</sup> + 11<sup>7''k''+4</sup> β 11<sup>5''k''+3</sup> + 11<sup>3''k''+2</sup> + 11<sup>{{itco|''k''}}+1</sup> |- !12 |12<sup>6''k''+3</sup> + 1 |12<sup>2{{itco|''k''}}+1</sup> + 1 |12<sup>2{{itco|''k''}}+1</sup> β 6(12<sup>''k''</sup>) + 1 |12<sup>2{{itco|''k''}}+1</sup> + 6(12<sup>''k''</sup>) + 1 | |} ===Other factors=== Once the algebraic and aurifeuillean factors are removed, the other factors of {{math|''b''<sup>''n''</sup> Β± 1}} are always of the form {{math|2''kn'' + 1}}, since the factors of {{math|''b''<sup>''n''</sup> β 1}} are all factors of <math>\Phi_n(b)</math>, and the factors of {{math|''b''<sup>''n''</sup> + 1}} are all factors of <math>\Phi_{2n}(b)</math>. When ''n'' is [[prime number|prime]], both algebraic and aurifeuillean factors are not possible, except the trivial factors ({{math|''b'' β 1}} for {{math|''b''<sup>''n''</sup> β 1}} and {{math|''b'' + 1}} for {{math|''b''<sup>''n''</sup> + 1}}). For [[Mersenne numbers]], the trivial factors are not possible for {{nowrap|prime ''n''}}, so all factors are of the form {{math|2''kn'' + 1}}. In general, all factors of {{math|(''b''<sup>''n''</sup> β 1) /(''b'' β 1)}} are of the form {{math|2''kn'' + 1,}} where {{math|''b'' β₯ 2}} and ''n'' is prime, except when ''n'' divides {{math|''b'' β 1}}, in which case {{math|(''b''<sup>''n''</sup> β 1) /(''b'' β 1)}} is divisible by ''n'' itself. Cunningham numbers of the form {{math|''b''<sup>''n''</sup> β 1}} can only be prime if ''b'' = 2 and ''n'' is prime, assuming that ''n'' β₯ 2; these are the Mersenne numbers. Numbers of the form {{math|''b''<sup>''n''</sup> + 1}} can only be prime if ''b'' is even and ''n'' is a [[power of 2]], again assuming {{math|''n'' β₯ 2;}} these are the generalized Fermat numbers, which are [[Fermat number]]s when ''b'' = 2. Any factor of a Fermat number {{math|2<sup>2<sup>''n''</sup></sup> + 1}} is of the form {{math|''k''·2<sup>''n''+2</sup> + 1}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)