Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
DNA microarray
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Principle == {{Main|Nucleic acid hybridization}} {{Further|#A typical protocol}} <!-- KEEP SECTION SIMPLE --> [[File:NA hybrid.svg|thumb|Hybridization of the target to the probe]] The core principle behind microarrays is hybridization between two DNA strands, the property of [[Complementarity (molecular biology)|complementary]] nucleic acid sequences to specifically pair with each other by forming [[hydrogen bond]]s between complementary [[Nucleotide|nucleotide base pairs]]. A high number of complementary base pairs in a nucleotide sequence means tighter [[non-covalent]] bonding between the two strands. After washing off non-specific bonding sequences, only strongly paired strands will remain hybridized. Fluorescently labeled target sequences that bind to a probe sequence generate a signal that depends on the hybridization conditions (such as temperature), and washing after hybridization. Total strength of the signal, from a spot (feature), depends upon the amount of target sample binding to the probes present on that spot. Microarrays use relative quantitation in which the intensity of a feature is compared to the intensity of the same feature under a different condition, <!-- 2 channel experiments are mentioned below! so do not repeat --> and the identity of the feature is known by its position. [[File:Microarray exp horizontal.svg|thumb|The steps required in a microarray experiment]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)