Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Darboux's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Statement== Suppose that <math>\theta </math> is a differential 1-form on an ''<math>n </math>''-dimensional manifold, such that <math>\mathrm{d} \theta </math> has constant [[Exterior algebra#Rank of a k-vector|rank]] ''<math>p </math>''. Then * if <math> \theta \wedge \left(\mathrm{d}\theta\right)^p = 0 </math> everywhere, then there is a local system of coordinates <math> (x_1,\ldots,x_{n-p},y_1,\ldots, y_p) </math> in which <math display="block"> \theta=x_1\,\mathrm{d}y_1+\ldots + x_p\,\mathrm{d}y_p; </math> * if <math> \theta \wedge \left( \mathrm{d} \theta \right)^p \ne 0 </math> everywhere, then there is a local system of coordinates <math> (x_1,\ldots,x_{n-p},y_1,\ldots, y_p) </math> in which<math display="block"> \theta=x_1\,\mathrm{d}y_1+\ldots + x_p\,\mathrm{d}y_p + \mathrm{d}x_{p+1}.</math> Darboux's original proof used [[Mathematical induction|induction]] on ''<math>p </math>'' and it can be equivalently presented in terms of [[Distribution (differential geometry)|distributions]]<ref>{{Cite book |last=Sternberg |first=Shlomo |url=https://archive.org/details/lecturesondiffer0000ster |title=Lectures on Differential Geometry |publisher=[[Prentice Hall]] |year=1964 |isbn=9780828403160 |pages=140-141 |author-link=Shlomo Sternberg}}</ref> or of [[Differential ideal|differential ideals]].<ref name=":0">{{Cite journal |last=Bryant |first=Robert L. |author-link=Robert Bryant (mathematician) |last2=Chern |first2=S. S. |author-link2=Shiing-Shen Chern |last3=Gardner |first3=Robert B. |author-link3=Robert Brown Gardner |last4=Goldschmidt |first4=Hubert L. |last5=Griffiths |first5=P. A. |author-link5=Phillip Griffiths |date=1991 |title=Exterior Differential Systems |url=https://doi.org/10.1007/978-1-4613-9714-4 |journal=Mathematical Sciences Research Institute Publications |language=en |doi=10.1007/978-1-4613-9714-4 |issn=0940-4740|url-access=subscription }}</ref> === Frobenius' theorem === Darboux's theorem for ''<math>p=0 </math>'' ensures that any 1-form ''<math>\theta \neq 0 </math>'' such that ''<math>\theta \wedge d\theta = 0 </math>'' can be written as ''<math>\theta = dx_1 </math>'' in some coordinate system <math> (x_1,\ldots,x_n) </math>. This recovers one of the formulation of [[Frobenius theorem (differential topology)|Frobenius theorem]] in terms of differential forms: if <math> \mathcal{I} \subset \Omega^*(M) </math> is the differential ideal generated by <math> \theta </math>, then ''<math>\theta \wedge d\theta = 0 </math>'' implies the existence of a coordinate system <math> (x_1,\ldots,x_n) </math> where <math> \mathcal{I} \subset \Omega^*(M) </math> is actually generated by <math> d x_1 </math>.<ref name=":0" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)