Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dawson function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== [[Image:DawsonDp.svg|thumb|300px|right|The Dawson function, <math>F(x) = D_+(x),</math> around the origin]] [[Image:DawsonDm.svg|thumb|300px|right|The Dawson function, <math>D_-(x),</math> around the origin]] The Dawson function is defined as either: <math display=block>D_+(x) = e^{-x^2} \int_0^x e^{t^2}\,dt,</math> also denoted as <math>F(x)</math> or <math>D(x),</math> or alternatively <math display=block>D_-(x) = e^{x^2} \int_0^x e^{-t^2}\,dt.\!</math> The Dawson function is the one-sided Fourier–Laplace [[sine transform]] of the [[Gaussian function]], <math display=block>D_+(x) = \frac12 \int_0^\infty e^{-t^2/4}\,\sin(xt)\,dt.</math> It is closely related to the [[error function]] erf, as :<math id="exp(-x^2) was downstairs, should be upstairs"> D_+(x) = {\sqrt{\pi} \over 2} e^{-x^2} \operatorname{erfi} (x) = - {i \sqrt{\pi} \over 2 }e^{-x^2} \operatorname{erf} (ix) </math> where erfi is the imaginary error function, {{nowrap|1=erfi(''x'') = −''i'' erf(''ix'').}} <br> Similarly, <math display="block">D_-(x) = \frac{\sqrt{\pi}}{2} e^{x^2} \operatorname{erf}(x)</math> in terms of the real error function, erf. In terms of either erfi or the [[Faddeeva function]] <math>w(z),</math> the Dawson function can be extended to the entire [[complex plane]]:<ref>Mofreh R. Zaghloul and Ahmed N. Ali, "[https://dx.doi.org/10.1145/2049673.2049679 Algorithm 916: Computing the Faddeyeva and Voigt Functions]," ''ACM Trans. Math. Soft.'' '''38''' (2), 15 (2011). Preprint available at [https://arxiv.org/abs/1106.0151 arXiv:1106.0151].</ref> <math display=block>F(z) = {\sqrt{\pi} \over 2} e^{-z^2} \operatorname{erfi} (z) = \frac{i\sqrt{\pi}}{2} \left[ e^{-z^2} - w(z) \right],</math> which simplifies to <math display=block>D_+(x) = F(x) = \frac{\sqrt{\pi}}{2} \operatorname{Im}[w(x)]</math> <math display=block>D_-(x) = i F(-ix) = -\frac{\sqrt{\pi}}{2} \left[ e^{x^2} - w(-ix) \right]</math> for real <math>x.</math> For <math>|x|</math> near zero, {{nowrap|1=''F''(''x'') ≈ ''x''.}} For <math>|x|</math> large, {{nowrap|1=''F''(''x'') ≈ 1/(2''x'').}} More specifically, near the origin it has the series expansion <math display=block>F(x) = \sum_{k=0}^\infty \frac{(-1)^k \, 2^k}{(2k+1)!!} \, x^{2k+1} = x - \frac{2}{3} x^3 + \frac{4}{15} x^5 - \cdots,</math> while for large <math>x</math> it has the asymptotic expansion <math display=block>F(x) = \frac{1}{2 x} + \frac{1}{4 x^3} + \frac{3}{8 x^5} + \cdots.</math> More precisely <math display=block>\left|F(x) - \sum_{k=0}^{N} \frac{(2k-1)!!}{2^{k+1} x^{2k+1}}\right| \leq \frac{C_N}{x^{2N+3}}.</math> where <math>n!!</math> is the [[double factorial]]. <math>F(x)</math> satisfies the differential equation <math display=block>\frac{dF}{dx} + 2xF = 1\,\!</math> with the initial condition <math>F(0) = 0.</math> Consequently, it has extrema for <math display=block>F(x) = \frac{1}{2 x},</math> resulting in ''x'' = ±0.92413887... ({{OEIS2C|id=A133841}}), ''F''(''x'') = ±0.54104422... ({{OEIS2C|id=A133842}}). Inflection points follow for <math display=block>F(x) = \frac{x}{2 x^2 - 1},</math> resulting in ''x'' = ±1.50197526... ({{OEIS2C|id=A133843}}), ''F''(''x'') = ±0.42768661... ({{OEIS2C|id=A245262}}). (Apart from the trivial [[inflection point]] at <math>x = 0,</math> <math>F(x) = 0.</math>)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)