Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
De Boor's algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Introduction == A general introduction to B-splines is given in the [[B-spline|main article]]. Here we discuss de Boor's algorithm, an efficient and numerically stable scheme to evaluate a spline curve <math> \mathbf{S}(x) </math> at position <math> x </math>. The curve is built from a sum of B-spline functions <math> B_{i,p}(x) </math> multiplied with potentially vector-valued constants <math> \mathbf{c}_i </math>, called control points, <math display="block"> \mathbf{S}(x) = \sum_i \mathbf{c}_i B_{i,p}(x). </math> B-splines of order <math> p + 1 </math> are connected piece-wise polynomial functions of degree <math> p </math> defined over a grid of knots <math> {t_0, \dots, t_i, \dots, t_m} </math> (we always use zero-based indices in the following). De Boor's algorithm uses [[Big O notation|O]](p<sup>2</sup>) + [[Big O notation|O]](p) operations to evaluate the spline curve. Note: the [[B-spline|main article about B-splines]] and the classic publications<ref name="de_boor_paper"></ref> use a different notation: the B-spline is indexed as <math> B_{i,n}(x) </math> with <math>n = p + 1</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)