Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dedekind eta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== For any complex number {{mvar|Ο}} with {{math|Im(''Ο'') > 0}}, let {{math|''q'' {{=}} ''e''<sup>2''ΟiΟ''</sup>}}; then the eta function is defined by, :<math>\eta(\tau) = e^\frac{\pi i \tau}{12} \prod_{n=1}^\infty \left(1-e^{2 n\pi i \tau}\right) = q^\frac{1}{24} \prod_{n=1}^\infty \left(1 - q^n\right) .</math> Raising the eta equation to the 24th power and multiplying by {{math|(2''Ο'')<sup>12</sup>}} gives :<math>\Delta(\tau)=(2\pi)^{12}\eta^{24}(\tau)</math> where {{math|Ξ}} is the [[modular discriminant]]. The presence of [[24 (number)|24]] can be understood by connection with other occurrences, such as in the 24-dimensional [[Leech lattice]]. The eta function is [[Holomorphic function|holomorphic]] on the upper half-plane but cannot be continued analytically beyond it. [[File:Q-Eulero.jpeg|thumb|right|Modulus of Euler phi on the unit disc, colored so that black = 0, red = 4]] [[Image:Discriminant real part.jpeg|thumb|right|The real part of the modular discriminant as a function of {{mvar|q}}.]] The eta function satisfies the [[functional equation]]s<ref>{{cite journal|last=Siegel|first=C. L.|title=A Simple Proof of ''Ξ·''(β1/''Ο'') {{=}} ''Ξ·''(''Ο''){{sqrt|''Ο''/''i''}}|journal=[[Mathematika]]|year=1954|volume=1|page=4|doi=10.1112/S0025579300000462}}</ref> :<math>\begin{align} \eta(\tau+1) &=e^\frac{\pi i}{12}\eta(\tau),\\ \eta\left(-\frac{1}{\tau}\right) &= \sqrt{-i\tau}\, \eta(\tau).\, \end{align}</math> In the second equation the [[Complex square root|branch of the square root]] is chosen such that {{math|{{sqrt|β''iΟ''}} {{=}} 1}} when {{math|''Ο'' {{=}} ''i''}}. More generally, suppose {{math|''a'', ''b'', ''c'', ''d''}} are integers with {{math|''ad'' β ''bc'' {{=}} 1}}, so that :<math>\tau\mapsto\frac{a\tau+b}{c\tau+d}</math> is a transformation belonging to the [[modular group]]. We may assume that either {{math|''c'' > 0}}, or {{math|''c'' {{=}} 0}} and {{math|''d'' {{=}} 1}}. Then :<math>\eta \left( \frac{a\tau+b}{c\tau+d} \right) = \epsilon (a,b,c,d) \left(c\tau+d\right)^\frac12 \eta(\tau),</math> where :<math>\epsilon (a,b,c,d)= \begin{cases} e^\frac{bi \pi}{12} &c=0,\,d=1, \\ e^{i\pi \left(\frac{a+d}{12c} - s(d,c)-\frac14\right)} &c>0. \end{cases}</math> Here {{math|''s''(''h'',''k'')}} is the [[Dedekind sum]] :<math>s(h,k)=\sum_{n=1}^{k-1} \frac{n}{k} \left( \frac{hn}{k} - \left\lfloor \frac{hn}{k} \right\rfloor -\frac12 \right).</math> Because of these functional equations the eta function is a [[modular form]] of weight {{sfrac|1|2}} and level 1 for a certain character of order 24 of the [[metaplectic group|metaplectic double cover]] of the modular group, and can be used to define other modular forms. In particular the [[modular discriminant]] of the [[Weierstrass elliptic function]] with :<math>\omega_2=\tau\omega_1</math> can be defined as :<math>\Delta(\tau) = (2 \pi\omega_1)^{12} \eta(\tau)^{24}\,</math> and is a modular form of weight 12. Some authors omit the factor of {{math|(2''Ο'')<sup>12</sup>}}, so that the series expansion has integral coefficients. The [[Jacobi triple product]] implies that the eta is (up to a factor) a Jacobi [[theta function]] for special values of the arguments:<ref>{{citation|first=Daniel|last= Bump|title=Automorphic Forms and Representations|year=1998|publisher=Cambridge University Press|isbn=0-521-55098-X}}</ref> :<math>\eta(\tau) = \sum_{n=1}^\infty \chi(n) \exp\left(\frac {\pi i n^2 \tau}{12}\right),</math> where {{math|''Ο''(''n'')}} is "the" [[Dirichlet character]] modulo 12 with {{math|''Ο''(Β±1) {{=}} 1}} and {{math|''Ο''(Β±5) {{=}} β1}}. Explicitly,{{Citation needed|date=September 2016}} :<math>\eta(\tau) = e^\frac{\pi i \tau}{12}\vartheta\left(\frac{\tau+1}{2}; 3\tau\right).</math> The [[Euler function]] :<math>\begin{align} \phi(q) &= \prod_{n=1}^\infty \left(1-q^n\right) \\ &= q^{-\frac{1}{24}} \eta(\tau), \end{align}</math> has a power series by the [[Pentagonal number theorem|Euler identity]]: :<math>\phi(q)=\sum_{n=-\infty}^\infty (-1)^n q^\frac{3n^2-n}{2}.</math> Note that by using [[Pentagonal number theorem| Euler Pentagonal number theorem]] for <math> \mathfrak{I} (\tau )>0 </math>, the eta function can be expressed as :<math>\eta(\tau)=\sum_{n=-\infty}^\infty e^{\pi i n}e^{3\pi i \left(n+\frac{1}{6}\right)^2 \tau}.</math> This can be proved by using <math>x=2\pi i \tau</math> in [[Pentagonal number theorem| Euler Pentagonal number theorem]] with the definition of eta function. Another way to see the Eta function is through the following limit <math>\lim_{z \to 0} \frac{\vartheta_1(z|\tau)}{z}=2\pi \eta^3(\tau)</math> Which alternatively is: <math> \sum_{n=0}^\infty (-1)^n (2n+1)q^{\frac{(2n+1)^2}8}=\eta^3(\tau)</math> Where <math> \vartheta_1(z|\tau)</math> is the [[Jacobi Theta function ]] and <math> \vartheta_1(z|\tau)=-\vartheta_{11}(z;\tau)</math> Because the eta function is easy to compute numerically from either [[power series]], it is often helpful in computation to express other functions in terms of it when possible, and products and quotients of eta functions, called eta quotients, can be used to express a great variety of modular forms. The picture on this page shows the modulus of the Euler function: the additional factor of {{math|''q''<sup>{{sfrac|1|24}}</sup>}} between this and eta makes almost no visual difference whatsoever. Thus, this picture can be taken as a picture of eta as a function of {{mvar|q}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)