Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Del
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== In the [[Cartesian coordinate system]] <math>\mathbb{R}^n</math> with coordinates <math>(x_1, \dots, x_n)</math> and [[standard basis]] <math>\{\mathbf e_1, \dots, \mathbf e_n \}</math>, del is a vector operator whose <math>x_1, \dots, x_n</math> components are the [[partial derivative]] operators <math>{\partial \over \partial x_1}, \dots, {\partial \over \partial x_n}</math>; that is, :<math> \nabla = \sum_{i=1}^n \mathbf e_i {\partial \over \partial x_i} = \left({\partial \over \partial x_1}, \ldots, {\partial \over \partial x_n} \right)</math> where the expression in parentheses is a row vector. In [[three-dimensional]] Cartesian coordinate system <math>\mathbb{R}^3</math> with coordinates <math>(x, y, z)</math> and standard basis or unit vectors of axes <math>\{\mathbf e_x, \mathbf e_y, \mathbf e_z \}</math>, del is written as: :<math>\nabla = \mathbf{e}_x {\partial \over \partial x} + \mathbf{e}_y {\partial \over \partial y} + \mathbf{e}_z {\partial \over \partial z}= \left({\partial \over \partial x}, {\partial \over \partial y}, {\partial \over \partial z} \right) </math> As a vector operator, del naturally acts on scalar fields via scalar multiplication, and naturally acts on vector fields via dot products and cross products. More specifically, for any scalar field <math>f</math> and any vector field <math>\mathbf{F}=(F_x, F_y, F_z)</math>, if one ''defines'' :<math>\left(\mathbf{e}_i {\partial \over \partial x_i}\right) f := {\partial \over \partial x_i}(\mathbf{e}_i f) = {\partial f \over \partial x_i}\mathbf{e}_i</math> :<math>\left(\mathbf{e}_i {\partial \over \partial x_i}\right) \cdot \mathbf{F} := {\partial \over \partial x_i}(\mathbf{e}_i\cdot \mathbf{F}) = {\partial F_i \over \partial x_i}</math> :<math>\left(\mathbf{e}_x {\partial \over \partial x}\right) \times \mathbf{F} := {\partial \over \partial x}(\mathbf{e}_x\times \mathbf{F}) = {\partial \over \partial x}(0, -F_z, F_y)</math> :<math>\left(\mathbf{e}_y {\partial \over \partial y}\right) \times \mathbf{F} := {\partial \over \partial y}(\mathbf{e}_y\times \mathbf{F}) = {\partial \over \partial y}(F_z,0,-F_x)</math> :<math>\left(\mathbf{e}_z {\partial \over \partial z}\right) \times \mathbf{F} := {\partial \over \partial z}(\mathbf{e}_z\times \mathbf{F}) = {\partial \over \partial z}(-F_y,F_x,0),</math> then using the above definition of <math>\nabla</math>, one may write :<math> \nabla f =\left(\mathbf{e}_x {\partial \over \partial x}\right)f + \left(\mathbf{e}_y {\partial \over \partial y}\right)f + \left(\mathbf{e}_z {\partial \over \partial z}\right)f = {\partial f \over \partial x}\mathbf{e}_x + {\partial f \over \partial y}\mathbf{e}_y + {\partial f \over \partial z}\mathbf{e}_z </math> and :<math> \nabla \cdot \mathbf{F} = \left(\mathbf{e}_x {\partial \over \partial x}\cdot \mathbf{F}\right) + \left(\mathbf{e}_y {\partial \over \partial y}\cdot \mathbf{F}\right) + \left(\mathbf{e}_z {\partial \over \partial z}\cdot \mathbf{F}\right)= {\partial F_x \over \partial x} + {\partial F_y \over \partial y} + {\partial F_z \over \partial z} </math> and :<math>\begin{align} \nabla \times \mathbf{F} &= \left(\mathbf{e}_x {\partial \over \partial x}\times \mathbf{F}\right) + \left(\mathbf{e}_y {\partial \over \partial y}\times \mathbf{F}\right) + \left(\mathbf{e}_z {\partial \over \partial z}\times \mathbf{F}\right)\\ &= {\partial \over \partial x}(0, -F_z, F_y) + {\partial \over \partial y}(F_z,0,-F_x) + {\partial \over \partial z}(-F_y,F_x,0)\\ &= \left({\partial F_z \over \partial y}-{\partial F_y \over \partial z}\right)\mathbf{e}_x + \left({\partial F_x \over \partial z}-{\partial F_z \over \partial x}\right)\mathbf{e}_y + \left({\partial F_y \over \partial x}-{\partial F_x \over \partial y}\right)\mathbf{e}_z \end{align}</math> :'''Example:''' :<math>f(x, y, z) = x + y + z </math> :<math>\nabla f = \mathbf{e}_x {\partial f \over \partial x} + \mathbf{e}_y {\partial f \over \partial y} + \mathbf{e}_z {\partial f \over \partial z} = \left(1, 1, 1 \right) </math> : Del can also be expressed in other coordinate systems, see for example [[del in cylindrical and spherical coordinates]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)